Mian Chin
Organization:
NASA Goddard Space Flight Center
Email:
Business Phone:
Work:
(301) 614-6007
Mobile:
(240) 305-7657 ext. 301614
Business Address:
NASA Goddard Space Flight Center
8800 Greenbelt Road, Code 614
Greenbelt, MD 20771
United StatesFirst Author Publications:
- Chin, M., et al. (2014), Multi-decadal aerosol variations from 1980 to 2009: a perspective from observations and a global model, Atmos. Chem. Phys., 14, 3657-3690, doi:10.5194/acp-14-3657-2014.
- Chin, M. (2012), Dirtier air from a weaker monsoon, Nature Geoscience, 5, 449-450.
- Chin, M., et al. (2009), Light absorption by pollution, dust, and biomass burning aerosols: a global model study and evaluation with AERONET measurements, Ann. Geophys., 27, 3439-3464.
- Chin, M., et al. (2007), Intercontinental transport of pollution and dust aerosols: implications for regional air quality, Atmos. Chem. Phys., 7, 5501-5517, doi:10.5194/acp-7-5501-2007.
- Chin, M., et al. (2004), Aerosol distribution in the Northern Hemisphere during ACE-Asia: Results from global model, satellite observations, and Sun photometer measurements, J. Geophys. Res., 109, D23S90, doi:10.1029/2004JD004829.
- Chin, M., et al. (2003), A global aerosol model forecast for the ACE-Asia field experiment, J. Geophys. Res., 108, 8654, doi:10.1029/2003JD003642.
- Chin, M., et al. (2002), Tropospheric Aerosol Optical Thickness from the GOCART Model and Comparisons with Satellite and Sun Photometer Measurements, J. Atmos. Sci., 59, 461-483.
- Chin, M., et al. (2000), Atmospheric sulfur cycle in the global mdel GOCART: Model description and global properties, J. Geophys. Res., 105, 24,661-24,687.
- Chin, M., et al. (2000), Atmospheric sulfur cycle in the global model GOCART: Comparison with field observations and regional budgets, J. Geophys. Res., 105, 24,689-24,712.
Co-Authored Publications:
- Breen, K., et al. (2024), Abrupt reduction in shipping emission as an inadvertent geoengineering termination shock produces substantial radiative warming Check for updates 1,2 2,3 2 4 1,2 Tianle Yuan , Hua Song , Lazaros Oreopoulos , Robert Wood , Huisheng Bian ,, Nature, doi:10.1038/s43247-024-01442-3.
- Bian, H., et al. (2023), Observationally constrained analysis of sulfur cycle in the marine atmosphere with NASA ATom measurements and AeroCom model simulations, doi:10.5194/egusphere-2023-1966 (submitted).
- Kahn, R., et al. (2023), Reducing Aerosol Forcing Uncertainty by Combining Models With Satellite and Within-The-Atmosphere Observations: A Three-Way Street, Rev. Geophys., 61, e2022RG000796, doi:10.1029/2022RG000796.
- Yang, A., et al. (2022), Global premature mortality by dust and pollution PM2.5 estimated from aerosol reanalysis of the modern-era retrospective analysis for research and applications, version 2, Frontiers in Environmental Science, 10, 975755, doi:10.3389/fenvs.2022.975755.
- Bian, H., et al. (2021), The response of the Amazon ecosystem to the photosynthetically active radiation fields: integrating impacts of biomass burning aerosol and clouds in the NASA GEOS Earth system model, Atmos. Chem. Phys., 21, 14177-14197, doi:10.5194/acp-21-14177-2021.
- Kim, D., et al. (2021), Spring Dust in Western North America and Its Interannual Variability—Understanding the Role of Local and Transported Dust, J. Geophys. Res., 126, org/10.1029/2021JD035383.
- Nault, B., et al. (2021), Chemical transport models often underestimate inorganic aerosol acidity in remote regions of the atmosphere, Commun Earth Environ, 2, doi:10.1038/s43247-021-00164-0.
- Thompson, C., et al. (2021), The NASA Atmospheric Tomography (ATom) Mission: Imaging the Chemistry of the Global Atmosphere, Bull. Am. Meteorol. Soc., doi:10.1175/BAMS-D-20-0315.1.
- Yu, H., et al. (2021), Observation and modeling of the historic “Godzilla” African dust intrusion into the Caribbean Basin and the southern US in June 2020, Atmos. Chem. Phys., 21, 12359-12383, doi:10.5194/acp-21-12359-2021.
- Hodzic, A., et al. (2020), Characterization of organic aerosol across the global remote troposphere: a comparison of ATom measurements and global chemistry models, Atmos. Chem. Phys., 20, 4607-4635, doi:10.5194/acp-20-4607-2020.
- Schill, G., et al. (2020), Widespread biomass burning smoke throughout the remote troposphere, Nat. Geosci., 13, 422-427, doi:10.1038/s41561-020-0586-1.
- Yu, H., et al. (2020), Interannual variability and trends of combustion aerosol and dust in major continental outflows revealed by MODIS retrievals and CAM5 simulations during 2003–2017, Atmos. Chem. Phys., 20, 139-161, doi:10.5194/acp-20-139-2020.
- Bian, H., et al. (2019), Observationally constrained analysis of sea salt aerosol in the marine atmosphere, Atmos. Chem. Phys., 19, 10773-10785, doi:10.5194/acp-19-10773-2019.
- Chen, C., et al. (2019), Constraining global aerosol emissions using POLDER/PARASOL satellite remote sensing observations, Atmos. Chem. Phys., 19, 14585-14606, doi:10.5194/acp-19-14585-2019.
- Kim, D., et al. (2019), Asian and Trans‐Pacific Dust: A Multimodel and Multiremote Sensing Observation Analysis, J. Geophys. Res..
- Yu, H., et al. (2019), Estimates of African Dust Deposition Along the Trans‐ Atlantic Transit Using the Decadelong Record of Aerosol Measurements from CALIOP, MODIS, MISR, and IASI, J. Geophys. Res., 124, 7975-7996, doi:10.1029/2019JD030574.
- Pan, X., et al. (2018), Connecting Indonesian Fires and Drought With the Type of El Niño and Phase of the Indian Ocean Dipole During 1979–2016, J. Geophys. Res., 123, 7974-7988, doi:10.1029/2018JD028402.
- Wofsy, S. C., et al. (2018), ATom: Merged Atmospheric Chemistry, Trace Gases, and Aerosols, Ornl Daac, doi:10.3334/ORNLDAAC/1581.
- Kim, D., et al. (2017), Role of surface wind and vegetation cover in multi-decadal variations of dust emission in the Sahara and Sahel, Atmos. Environ., 148, 282-296, doi:10.1016/j.atmosenv.2016.10.051.
- Petrenko, M., et al. (2017), Refined Use of Satellite Aerosol Optical Depth Snapshots to Constrain Biomass Burning Emissions in the GOCART Model, J. Geophys. Res., 122, doi:10.1002/2017JD026693.
- Li, S., et al. (2015), Improving satellite-retrieved aerosol microphysical properties using GOCART data, Atmos. Meas. Tech., 8, 1157-1171, doi:10.5194/amt-8-1157-2015.
- Li, S., et al. (2015), Improving satellite-retrieved aerosol microphysical properties using GOCART data, Atmos. Meas. Tech., 8, 1157-1171, doi:10.5194/amt-8-1157-2015.
- Pan, X., et al. (2015), A multi-model evaluation of aerosols over South Asia: common problems and possible causes, Atmos. Chem. Phys., 15, 5903-5928, doi:10.5194/acp-15-5903-2015.
- Peters-Lidard, C. D., et al. (2015), Integrated modeling of aerosol, cloud, precipitation and land processes at satellite-resolved scales, Environmental Modelling & Software, 67, 149-159.
- Veselovskii, I., et al. (2015), Characterization of forest fire smoke event near Washington, DC in summer 2013 with multi-wavelength lidar, Atmos. Chem. Phys., 15, 1647-1660, doi:10.5194/acp-15-1647-2015.
- Yu, H., et al. (2015), Quantification of Trans-Atlantic Dust Transport from Seven-year (2007-2013) Record of CALIPSO Lidar Measurements, " Remote Sens. Environ, 159, 232-249, doi:10.1016/j.rse.2014.12.010.
- Yu, H., et al. (2015), The fertilizing role of African dust in the Amazon rainforest: A first multiyear assessment based on data from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations, Geophys. Res. Lett., 42, 1984-1991, doi:10.1002/2015GL063040.
- Anenberg, et al. (2014), Impacts of intercontinental transport of anthropogenic fine particulate matter on human mortality, Air Qual. Atmo. Health, doi:10.1007/s11869-014-0248-9.
- Anenberg, S., et al. (2014), Impacts of intercontinental transport of anthropogenic fine particulate matter on human mortality, Air Quality, Atmosphere & Health, doi:10.1007/s11869-014-0248-9.
- Jiao, C., et al. (2014), An AeroCom assessment of black carbon in Arctic snow and sea ice, Atmos. Chem. Phys., 14, 2399-2417, doi:10.5194/acp-14-2399-2014.
- Kim, D., et al. (2014), Sources, sinks, and transatlantic transport of North Africandust aerosol: A multimodel analysis and comparison with remote sensing data, J. Geophys. Res., 119, 6259-6277, doi:10.1002/2013JD021099.
- Kim, D., et al. (2014), Sources, sinks, and transatlantic transport of North African dust aerosol: A multimodel analysis and comparison with remote sensing data, J. Geophys. Res., 119, 6259-6277, doi:10.1002/2013JD021099.
- Matsui, T., et al. (2014), Introducing multisensor satellite radiance-based evaluation for regional Earth System modeling, J. Geophys. Res., 119, 8450-8475, doi:10.1002/2013JD021424.
- Matsui, T., et al. (2014), Current And Future Perspectives Of Aerosol Research At Nasa Goddard Space Flight Center, Bull. Am. Meteorol. Soc., 1-5, doi:10.1175/BAMS-D-13-00153.1.
- Rosenfeld, D., et al. (2014), Global observations of aerosol-cloud-precipitationclimate interactions, Rev. Geophys., 52, 750-808, doi:10.1002/2013RG000441.
- Samset, B. H., et al. (2014), Modelled black carbon radiative forcing and atmospheric lifetime in AeroCom Phase II constrained by aircraft observations, Atmos. Chem. Phys., 14, 12465-12477, doi:10.5194/acp-14-12465-2014.
- Shi, R., et al. (2014), Implementation of an aerosol–cloud-microphysics–radiation coupling into the NASA unified WRF: Simulation results for the 6–7 August 2006 AMMA special observing period, Q. J. R. Meteorol. Soc., 140, 2158-2175, doi:10.1002/qj.2286.
- Tsigaridis, K., et al. (2014), The AeroCom evaluation and intercomparison of organic aerosol in global models, Atmos. Chem. Phys., 14, 10845-10895, doi:10.5194/acp-14-10845-2014.
- Bian, H., et al. (2013), Source attributions of pollution to the Western Arctic during the NASA ARCTAS field campaign, Atmos. Chem. Phys., 13, 4707-4721, doi:10.5194/acp-13-4707-2013.
- Kim, D., et al. (2013), The effect of the dynamic surface bareness on dust source function, emission, and distribution, J. Geophys. Res., 118, 1-16, doi:10.1029/2012JD017907.
- Moorthy, K. K., et al. (2013), Performance evaluation of chemistry transport models over India, Atmos. Environ., 71, 210-225, doi:10.1016/j.atmosenv.2013.01.056.
- Myhre, G., et al. (2013), Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations, Atmos. Chem. Phys., 13, 1853-1877, doi:10.5194/acp-13-1853-2013.
- Shindell, D., et al. (2013), Radiative forcing in the ACCMIP historical and future climate simulations, Atmos. Chem. Phys., 13, 2939-2974, doi:10.5194/acp-13-2939-2013.
- Stier, P., et al. (2013), Host model uncertainties in aerosol radiative forcing estimates: results from the AeroCom prescribed intercomparison study, Atmos. Chem. Phys., 13, 3245-3270, doi:10.5194/acp-13-3245-2013.
- Su, W., et al. (2013), Global all-sky shortwave direct radiative forcing of anthropogenic aerosols from combined satellite observations and GOCART simulations, J. Geophys. Res., 118, 655-669, doi:10.1029/2012JD018294.
- Tao, Z., et al. (2013), Effect of land cover on atmospheric processes and air quality over the continental United States – a NASA Unified WRF (NU-WRF) model study, Atmos. Chem. Phys., 13, 6207-6226, doi:10.5194/acp-13-6207-2013.
- Yasunari, T. J., et al. (2013), Estimated range of black carbon dry deposition and the related snow albedo reduction over Himalayan glaciers during dry pre-monsoon periods, Atmos. Environ., 78, 259-267, doi:10.1016/j.atmosenv.2012.03.031.
- Yu, H., et al. (2013), A multi-model assessment of the influence of regional anthropogenic emission reductions on aerosol direct radiative forcing and the role of intercontinental transport, J. Geophys., Res, 118, 700-720, doi:10.1029/2012JD018148.
- Yu, H., et al. (2013), Satellite perspective of aerosol intercontinental transport: from qualitative tracking to quantitative characterization, Atmos. Res., 124, 73-100, doi:10.1016/j.atmosres.2012.12.013.
- Fishman, J., et al. (2012), The United States’ Next Generation Of Atmospheric Composition And Coastal Ecosystem Measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission, Bull. Am. Meteorol. Soc., 1547-1566.
- Ichoku, C., R. Kahn, and M. Chin (2012), Satellite contributions to the quantitative characterization of biomass burning for climate modeling, Atmos. Res., 111, 1-28, doi:10.1016/j.atmosres.2012.03.007.
- Koffi, B., et al. (2012), Application of the CALIOP layer product to evaluate the vertical distribution of aerosols estimated by global models: AeroCom phase I results, J. Geophys. Res., 117, D10201, doi:10.1029/2011JD016858.
- Petrenko, M., et al. (2012), The use of satellite-measured aerosol optical depth to constrain biomass burning emissions source strength in the global model GOCART, J. Geophys. Res., 117, D18212, doi:10.1029/2012JD017870.
- Remer, L., et al. (2012), Retrieving aerosol in a cloudy environment: aerosol product availability as a function of spatial resolution, Atmos. Meas. Tech., 5, 1823-1840, doi:10.5194/amt-5-1823-2012.
- Yu, H., et al. (2012), An integrated analysis of aerosol above clouds from A-Train multi-sensor measurements, Remote Sensing of Environment, 121, 125-131, doi:10.1016/j.rse.2012.01.011.
- Yu, H., et al. (2012), Aerosols from Overseas Rival Domestic Emissions over North America, Science, 337, 566-569, doi:10.1126/science.1217576.
- Zhang, Y., et al. (2012), Aerosol daytime variations over North and South America derived from multiyear AERONET measurements, J. Geophys. Res., 117, D05211, doi:10.1029/2011JD017242.
- Chiacchio, M., et al. (2011), Decadal variability of aerosol optical depth in Europe and its relationship to the temporal shift of the North Atlantic Oscillation in the realm of dimming and brightening, J. Geophys. Res., 116, D02108, doi:10.1029/2010JD014471.
- Huneeus, N., et al. (2011), Global dust model intercomparison in AeroCom phase I, Atmos. Chem. Phys., 11, 7781-7816, doi:10.5194/acp-11-7781-2011.
- Kim, D., et al. (2011), Dust optical properties over North Africa and Arabian Peninsula derived from the AERONET dataset, Atmos. Chem. Phys., 11, 10733-10741, doi:10.5194/acp-11-10733-2011.
- Liang, Q., et al. (2011), Reactive nitrogen, ozone and ozone production in the Arctic troposphere and the impact of stratosphere-troposphere exchange, Atmos. Chem. Phys., 11, 13181-13199, doi:10.5194/acp-11-13181-2011.
- Lyapustin, A., et al. (2011), Reduction of aerosol absorption in Beijing since 2007 from MODIS and AERONET, Geophys. Res. Lett., 38, L10803, doi:10.1029/2011GL047306.
- Smirnov, A., et al. (2011), Maritime aerosol network as a component of AERONET – first results and comparison with global aerosol models and satellite retrievals, Atmos. Meas. Tech., 4, 583-597, doi:10.5194/amt-4-583-2011.
- Bian, H., et al. (2010), Multiscale carbon monoxide and aerosol correlations from satellite measurements and the GOCART model: Implication for emissions and atmospheric evolution, J. Geophys. Res., 115, D07302, doi:10.1029/2009JD012781.
- Colarco, P. R., et al. (2010), Online simulations of global aerosol distributions in the NASA GEOS‐4 model and comparisons to satellite and ground‐based aerosol optical depth, J. Geophys. Res., 115, D14207, doi:10.1029/2009JD012820.
- Lu, Z., et al. (2010), Sulfur dioxide emissions in China and sulfur trends in East Asia since 2000, Atmos. Chem. Phys., 10, 6311-6331, doi:10.5194/acp-10-6311-2010.
- Ott, L., et al. (2010), Influence of the 2006 Indonesian biomass burning aerosols on tropical dynamics studied with the GEOS‐5 AGCM, J. Geophys. Res., 115, D14121, doi:10.1029/2009JD013181.
- Stroppiana, D., et al. (2010), Comparison of global inventories of CO emissions from biomass burning derived from remotely sensed data, Atmos. Chem. Phys., 10, 12173-12189, doi:10.5194/acp-10-12173-2010.
- Yu, H., et al. (2010), Global view of aerosol vertical distributions from CALIPSO lidar measurements and GOCART simulations: Regional and seasonal variations, J. Geophys. Res., 115, D00H30, doi:10.1029/2009JD013364.
- Bian, H., et al. (2009), Sensitivity of aerosol optical thickness and aerosol direct radiative effect to relative humidity, Atmos. Chem. Phys., 9, 2375-2386, doi:10.5194/acp-9-2375-2009.
- Koch, D., et al. (2009), Evaluation of black carbon estimations in global aerosol models, Atmos. Chem. Phys., 9, 9001-9026, doi:10.5194/acp-9-9001-2009.
- Streets, D., et al. (2009), Anthropogenic and natural contributions to regional trends in aerosol optical depth, 1980–2006, J. Geophys. Res., 114, D00D18, doi:10.1029/2008JD011624.
- Vermote, E. F., et al. (2009), An approach to estimate global biomass burning emissions of organic and black carbon from MODIS fire radiative power, J. Geophys. Res., 114, D18205, doi:10.1029/2008JD011188.
- Yu, H., et al. (2009), Variability of marine aerosol fine-mode fraction and estimates of anthropogenic aerosol component over cloud-free oceans from the Moderate Resolution Imaging Spectroradiometer (MODIS), J. Geophys. Res., 114, D10206, doi:10.1029/2008JD010648.
- Dubovik, O., et al. (2008), Retrieving global aerosol sources from satellites using inverse modeling, Atmos. Chem. Phys., 8, 209-250, doi:10.5194/acp-8-209-2008.
- Lau, W., et al. (2008), The Joint Aerosol– Monsoon Experiment: A New Challenge for Monsoon Climate Research, Bull. Am. Meteorol. Soc., 369-383.
- Liu, H., et al. (2008), Synthesis of information on aerosol optical properties, J. Geophys. Res., 113, D07206, doi:10.1029/2007JD008735.
- Shindell, D., et al. (2008), A multi-model assessment of pollution transport to the Arctic, Atmos. Chem. Phys., 8, 5353-5372, doi:10.5194/acp-8-5353-2008.
- Streets, D., et al. (2008), Aerosol trends over China, 1980–2000 ☆, Atmos. Res., 88, 174-182, doi:10.1016/j.atmosres.2007.10.016.
- Yu, H., et al. (2008), A satellite-based assessment of transpacific transport of pollution aerosol, J. Geophys. Res., 113, D14S12, doi:10.1029/2007JD009349.
- Zhang, Y., et al. (2008), A regional climate model study of how biomass burning aerosol impacts land-atmosphere interactions over the Amazon, J. Geophys. Res., 113, D14S15, doi:10.1029/2007JD009449.
- Zhao, T., et al. (2008), Derivation of component aerosol direct radiative forcing at the top of atmosphere for clear-sky oceans, J. Quant. Spectrosc. Radiat. Transfer, 109, 1162-1186.
- Bian, H., et al. (2007), Sensitivity of global CO simulations to uncertainties in biomass burning sources, J. Geophys. Res., 112, D23308, doi:10.1029/2006JD008376.
- Textor, C., et al. (2007), The effect of harmonized emissions on aerosol properties in global models – an AeroCom experiment, Atmos. Chem. Phys., 7, 4489-4501, doi:10.5194/acp-7-4489-2007.
- Weaver, C., et al. (2007), Direct Insertion of MODIS Radiances in a Global Aerosol Transport Model, J. Atmos. Sci., 64, 808-826, doi:10.1175/JAS3838.1.
- Arimoto, R., et al. (2006), Characterization of Asian Dust during ACE-Asia☆, Global and Planetary Change, 52, 23-56, doi:10.1016/j.gloplacha.2006.02.013.
- Bian, H., et al. (2006), A test of sensitivity to convective transport in a global atmospheric CO2 simulation, Tellus, 58B, 463-475, doi:10.1111/j.1600-0889.2006.00212.x.
- Kim, M., et al. (2006), Atmospheric Teleconnection over Eurasia Induced by Aerosol Radiative Forcing during Boreal Spring, J. Climate, 19, 4700-4718.
- Kinne, S., et al. (2006), An AeroCom initial assessment – optical properties in aerosol component modules of global models, Atmos. Chem. Phys., 6, 1815-1834, doi:10.5194/acp-6-1815-2006.
- Matsui, T., et al. (2006), Satellite-based assessment of marine low cloud variability associated with aerosol, atmospheric stability, and the diurnal cycle, J. Geophys. Res., 111, D17204, doi:10.1029/2005JD006097.
- Smirnov, A., et al. (2006), Ship-based aerosol optical depth measurements in the Atlantic Ocean: Comparison with satellite retrievals and GOCART model, Geophys. Res. Lett., 33, L14817, doi:10.1029/2006GL026051.
- Streets, D., Y. Wu, and M. Chin (2006), Two-decadal aerosol trends as a likely explanation of the global dimming/brightening transition, Geophys. Res. Lett., 33, L15806, doi:10.1029/2006GL026471.
- Textor, C., et al. (2006), Analysis and quantification of the diversities of aerosol life cycles within AeroCom, Atmos. Chem. Phys., 6, 1777-1813, doi:10.5194/acp-6-1777-2006.
- Yu, H., et al. (2006), A review of measurement-based assessments of the aerosol direct radiative effect and forcing, Atmos. Chem. Phys., 6, 613-666, doi:10.5194/acp-6-613-2006.
- Anderson, T. L., et al. (2005), An “A-Train” Strategy for Quantifying Direct Climate Forcing by Anthropogenic Aerosols, Bull. Am. Meteorol. Soc., 1795, doi:10.1175/BAMS-86-12-1795.
- Kaufman, Y. J., et al. (2005), Aerosol anthropogenic component estimated from satellite data, Geophys. Res. Lett., 32, L17804, doi:10.1029/2005GL023125.
- Vautard, R., et al. (2005), On the contribution of natural Aeolian sources to particulate matter concentrations in Europe: Testing hypotheses with a modelling approach, Atmos. Environ., 39, 3291-3303, doi:10.1016/j.atmosenv.2005.01.051.
- Ginoux, P., et al. (2004), Long-term simulation of global dust distribution with the GOCART model: correlation with North Atlantic Oscillation, Environmental Modelling & Software, 19, 113-128, doi:10.1016/S1364-8152(03)00114-2.
- Kittaka, C., et al. (2004), A three-dimensional regional modeling study of the impact of clouds on sulfate distributions during TRACE-P, J. Geophys. Res., 109, D15S11, doi:10.1029/2003JD004353.
- Matsui, T., et al. (2004), Regional comparison and assimilation of GOCART and MODIS aerosol optical depth across the eastern U.S., Geophys. Res. Lett., 31, L21101, doi:10.1029/2004GL021017.
- Park, R. J., et al. (2004), Natural and transboundary pollution influences on sulfate-nitrate-ammonium aerosols in the United States: implications for policy, J. Geophys. Res., 109, D15204, doi:10.1029/2003JD004473.
- Yu, H., et al. (2004), Direct radiative effect of aerosols as determined from a combination of MODIS retrievals and GOCART simulations, J. Geophys. Res., 109, D03206, doi:10.1029/2003JD003914.
- Duncan, B., et al. (2003), Indonesian wildfires of 1997: Impact on tropospheric chemistry, J. Geophys. Res., 108, 4458, doi:10.1029/2002JD003195.
- Kinne, S., et al. (2003), Monthly averages of aerosol properties: A global comparison among models, satellite data, and AERONET ground data, J. Geophys. Res., 108, 4634, doi:10.1029/2001JD001253.
- Martin, R., et al. (2003), Global and Regional Decreases in Tropospheric Oxidants from Photochemical Effects of Aerosols, J. Geophys. Res., 108, 4097, doi:10.1029/2002JD002622.
- Park, R. J., et al. (2003), Sources of carbonaceous aerosols over the United States and implications for natural visibility, J. Geophys. Res., 108, 4355, doi:10.1029/2002JD003190.
- Sato, M., et al. (2003), Global atmospheric black carbon inferred from AERONET, Proc. Natl. Acad. Sci., 100, doi:10.1073/pnas.0731897100.
- Yu, H., et al. (2003), Annual cycle of global distributions of aerosol optical depth from integration of MODIS retrievals and GOCART model simulations, J. Geophys. Res., 108, 4128, doi:10.1029/2002JD002717.
- Ginoux, P., et al. (2001), Sources and global distributions of dust aerosols simulated with the GOCART model, J. Geophys. Res., 106, 20,255-20,273.