Huisheng Bian
Organization:
NASA Goddard Space Flight Center
University of Maryland, Baltimore County
First Author Publications:
- Bian, H., et al. (2024), Observationally constrained analysis of sulfur cycle in the marine atmosphere with NASA ATom measurements and AeroCom model simulations, Atmos. Chem. Phys., doi:10.5194/acp-24-1717-2024.
- Bian, H., et al. (2023), Observationally constrained analysis of sulfur cycle in the marine atmosphere with NASA ATom measurements and AeroCom model simulations, doi:10.5194/egusphere-2023-1966 (submitted).
- Bian, H., et al. (2021), The response of the Amazon ecosystem to the photosynthetically active radiation fields: integrating impacts of biomass burning aerosol and clouds in the NASA GEOS Earth system model, Atmos. Chem. Phys., 21, 14177-14197, doi:10.5194/acp-21-14177-2021.
- Bian, H., et al. (2019), Observationally constrained analysis of sea salt aerosol in the marine atmosphere, Atmos. Chem. Phys., 19, 10773-10785, doi:10.5194/acp-19-10773-2019.
- Bian, H., et al. (2017), Investigation of global particulate nitrate from the AeroCom phase III experiment, Atmos. Chem. Phys., 17, 12911-12940, doi:10.5194/acp-17-12911-2017.
- Bian, H., et al. (2013), Source attributions of pollution to the Western Arctic during the NASA ARCTAS field campaign, Atmos. Chem. Phys., 13, 4707-4721, doi:10.5194/acp-13-4707-2013.
- Bian, H., et al. (2010), Multiscale carbon monoxide and aerosol correlations from satellite measurements and the GOCART model: Implication for emissions and atmospheric evolution, J. Geophys. Res., 115, D07302, doi:10.1029/2009JD012781.
- Bian, H., et al. (2009), Sensitivity of aerosol optical thickness and aerosol direct radiative effect to relative humidity, Atmos. Chem. Phys., 9, 2375-2386, doi:10.5194/acp-9-2375-2009.
- Bian, H., et al. (2007), Sensitivity of global CO simulations to uncertainties in biomass burning sources, J. Geophys. Res., 112, D23308, doi:10.1029/2006JD008376.
- Bian, H., et al. (2006), A test of sensitivity to convective transport in a global atmospheric CO2 simulation, Tellus, 58B, 463-475, doi:10.1111/j.1600-0889.2006.00212.x.
Co-Authored Publications:
- Ahsan, H., et al. (2024), The Emissions Model Intercomparison Project (Emissions-MIP): quantifying model sensitivity to emission characteristics, Atmos. Chem. Phys., doi:10.5194/acp-23-14779-2023.
- Collow, A., et al. (2024), Benchmarking GOCART-2G in the Goddard Earth Observing System (GEOS), Geosci. Model. Dev., doi:10.5194/gmd-17-1443-2024.
- Das, S., et al. (2024), Improved simulations of biomass burning aerosol optical properties and lifetimes in the NASA GEOS Model during the ORACLES-I campaign, Atmos. Chem. Phys., doi:10.5194/acp-24-4421-2024.
- Yuan, T., et al. (2024), Abrupt reduction in shipping emission as an inadvertent geoengineering termination shock produces substantial radiative warming Check for updates 1,2 2,3 2 4 1,2 Tianle Yuan , Hua Song , Lazaros Oreopoulos , Robert Wood , Huisheng Bian ,, Nature, doi:10.1038/s43247-024-01442-3.
- Zhong, Q., et al. (2024), Authors, some Threefold reduction of modeled uncertainty in direct rights reserved; exclusive licensee radiative effects over biomass burning regions by American Association for the Advancement constraining absorbing aerosols of Science. No claim to origi, Zhong et al., Sci. Adv., 9, 2023.
- Westberry, T. K., et al. (2023), Atmospheric nourishment of global ocean ecosystems, Science, 380, 515-519, doi:10.1126/science.abq5252.
- Froyd, K., et al. (2022), Dominant role of mineral dust in cirrus cloud formation revealed by global-scale measurements, Nat. Geosci., 15, 177-183, doi:10.1038/s41561-022-00901-w.
- Moch, J. M., et al. (2022), Aerosol-Radiation Interactions in China in Winter: Competing Effects of Reduced Shortwave Radiation and Cloud-SnowfallAlbedo Feedbacks Under Rapidly Changing Emissions, J. Geophys. Res..
- Nault, B., et al. (2021), Chemical transport models often underestimate inorganic aerosol acidity in remote regions of the atmosphere, Commun Earth Environ, 2, doi:10.1038/s43247-021-00164-0.
- Thompson, C., et al. (2021), The NASA Atmospheric Tomography (ATom) Mission: Imaging the Chemistry of the Global Atmosphere, Bull. Am. Meteorol. Soc., doi:10.1175/BAMS-D-20-0315.1.
- Yu, H., et al. (2021), Observation and modeling of the historic “Godzilla” African dust intrusion into the Caribbean Basin and the southern US in June 2020, Atmos. Chem. Phys., 21, 12359-12383, doi:10.5194/acp-21-12359-2021.
- Hodzic, A., et al. (2020), Characterization of organic aerosol across the global remote troposphere: a comparison of ATom measurements and global chemistry models, Atmos. Chem. Phys., 20, 4607-4635, doi:10.5194/acp-20-4607-2020.
- Pan, X., et al. (2020), Six global biomass burning emission datasets: intercomparison and application in one global aerosol model, Atmos. Chem. Phys., 20, 969-994, doi:10.5194/acp-20-969-2020.
- Schill, G., et al. (2020), Widespread biomass burning smoke throughout the remote troposphere, Nat. Geosci., 13, 422-427, doi:10.1038/s41561-020-0586-1.
- Hanisco, T. F., et al. (2019), ATom: L2 Measurements of In Situ Airborne Formaldehyde (ISAF), Ornl Daac, doi:10.3334/ORNLDAAC/1730.
- Kim, D., et al. (2019), Asian and Trans‐Pacific Dust: A Multimodel and Multiremote Sensing Observation Analysis, J. Geophys. Res..
- Murphy, D., et al. (2019), The distribution of sea-salt aerosol in the global troposphere, Atmos. Chem. Phys., 19, 4093-4104, doi:10.5194/acp-19-4093-2019.
- Yu, H., et al. (2019), Estimates of African Dust Deposition Along the Trans‐ Atlantic Transit Using the Decadelong Record of Aerosol Measurements from CALIOP, MODIS, MISR, and IASI, J. Geophys. Res., 124, 7975-7996, doi:10.1029/2019JD030574.
- Dong, X., et al. (2018), Long-range transport impacts on surface aerosol concentrations and the contributions to haze events in China: an HTAP2 multi-model study, Atmos. Chem. Phys., 18, 15581-15600, doi:10.5194/acp-18-15581-2018.
- Liang, C., et al. (2018), HTAP2 multi-model estimates of premature human mortality due to intercontinental transport of air pollution and emission sectors, Atmos. Chem. Phys., 18, 10497-10520, doi:10.5194/acp-18-10497-2018.
- Liu, F., et al. (2018), A new global anthropogenic SO2 emission inventory for the last decade: a mosaic of satellite-derived and bottom-up emissions, Atmos. Chem. Phys., 18, 16571-16586, doi:10.5194/acp-18-16571-2018.
- Tan, J., et al. (2018), Source contributions to sulfur and nitrogen deposition – an HTAP II multi-model study on hemispheric transport, Atmos. Chem. Phys., 18, 12223-12240, doi:10.5194/acp-18-12223-2018.
- Wofsy, S. C., et al. (2018), ATom: Merged Atmospheric Chemistry, Trace Gases, and Aerosols, Ornl Daac, doi:10.3334/ORNLDAAC/1581.
- Cameron, M. A., et al. (2017), An intercomparative study of the effects of aircraft emissions on surface air quality, J. Geophys. Res., 122, 8325-8344, doi:10.1002/2016JD025594.
- Chin, M., et al. (2017), Chapter 5 Connection Between East Asian Air Pollution and Monsoon System, ISSI Scientific Report Series 16, 87, I, doi:10.1007/978-3-319-59489-7_5.
- Das, S., et al. (2017), Biomass burning aerosol transport and vertical distribution over the South African-Atlantic region, J. Geophys. Res., 122, 6391-6415, doi:10.1002/2016JD026421.
- Kim, D., et al. (2017), Role of surface wind and vegetation cover in multi-decadal variations of dust emission in the Sahara and Sahel, Atmos. Environ., 148, 282-296, doi:10.1016/j.atmosenv.2016.10.051.
- Sand, M., et al. (2017), Aerosols at the poles: an AeroCom Phase II multi-model evaluation, Atmos. Chem. Phys., 17, 12197-12218, doi:10.5194/acp-17-12197-2017.
- Koffi, B., et al. (2016), Evaluation of the aerosol vertical distribution in global aerosol models through comparison against CALIOP measurements: AeroCom phase II results, J. Geophys. Res., 121, 7254-7283, doi:10.1002/2015JD024639.
- Stjern, C. W., et al. (2016), Global and regional radiative forcing from 20 % reductions in BC, OC and SO4 – an HTAP2 multi-model study, Atmos. Chem. Phys., 16, 13579-13599, doi:10.5194/acp-16-13579-2016.
- Pan, X., et al. (2015), A multi-model evaluation of aerosols over South Asia: common problems and possible causes, Atmos. Chem. Phys., 15, 5903-5928, doi:10.5194/acp-15-5903-2015.
- Veselovskii, I., et al. (2015), Characterization of forest fire smoke event near Washington, DC in summer 2013 with multi-wavelength lidar, Atmos. Chem. Phys., 15, 1647-1660, doi:10.5194/acp-15-1647-2015.
- Weidner, R. J., et al. (2015), Estimate of carbonyl sulfide tropical oceanic surface fluxes using Aura Tropospheric Emission Spectrometer observations Le Kuai1, John R. Worden2, J. Elliott Campbell3, Susan S. Kulawik4, King-Fai Li5, Meemong Lee2,, J. Geophys. Res., 120, 11,012-11,023, doi:10.1002/2015JD023493.
- Yu, H., et al. (2015), Quantification of Trans-Atlantic Dust Transport from Seven-year (2007-2013) Record of CALIPSO Lidar Measurements, " Remote Sens. Environ, 159, 232-249, doi:10.1016/j.rse.2014.12.010.
- Yu, H., et al. (2015), Quantification of trans-Atlantic dust transport from seven-year (2007–2013) record of CALIPSO lidar measurements, Remote Sensing of Environment, 159, 232-249, doi:10.1016/j.rse.2014.12.010.
- Yu, H., et al. (2015), The fertilizing role of African dust in the Amazon rainforest: A first multiyear assessment based on data from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations, Geophys. Res. Lett., 42, 1984-1991, doi:10.1002/2015GL063040.
- Anenberg, et al. (2014), Impacts of intercontinental transport of anthropogenic fine particulate matter on human mortality, Air Qual. Atmo. Health, doi:10.1007/s11869-014-0248-9.
- Chin, M., et al. (2014), Multi-decadal aerosol variations from 1980 to 2009: a perspective from observations and a global model, Atmos. Chem. Phys., 14, 3657-3690, doi:10.5194/acp-14-3657-2014.
- Jiao, C., et al. (2014), An AeroCom assessment of black carbon in Arctic snow and sea ice, Atmos. Chem. Phys., 14, 2399-2417, doi:10.5194/acp-14-2399-2014.
- Samset, B. H., et al. (2014), Modelled black carbon radiative forcing and atmospheric lifetime in AeroCom Phase II constrained by aircraft observations, Atmos. Chem. Phys., 14, 12465-12477, doi:10.5194/acp-14-12465-2014.
- Tsigaridis, K., et al. (2014), The AeroCom evaluation and intercomparison of organic aerosol in global models, Atmos. Chem. Phys., 14, 10845-10895, doi:10.5194/acp-14-10845-2014.
- Belikov, D. A., et al. (2013), Off-line algorithm for calculation of vertical tracer transport in the troposphere due to deep convection, Atmos. Chem. Phys., 13, 1093-1114, doi:10.5194/acp-13-1093-2013.
- Kim, D., et al. (2013), The effect of the dynamic surface bareness on dust source function, emission, and distribution, J. Geophys. Res., 118, 1-16, doi:10.1029/2012JD017907.
- Myhre, G., et al. (2013), Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations, Atmos. Chem. Phys., 13, 1853-1877, doi:10.5194/acp-13-1853-2013.
- Saito, R., et al. (2013), TransCom model simulations of methane: Comparison of vertical profiles with aircraft measurements, J. Geophys. Res., 118, 3891-3904, doi:10.1002/jgrd.50380.
- Samset, B. H., et al. (2013), Black carbon vertical profiles strongly affect its radiative forcing uncertainty, Atmos. Chem. Phys., 13, 2423-2434, doi:10.5194/acp-13-2423-2013.
- Stier, P., et al. (2013), Host model uncertainties in aerosol radiative forcing estimates: results from the AeroCom prescribed intercomparison study, Atmos. Chem. Phys., 13, 3245-3270, doi:10.5194/acp-13-3245-2013.
- Yu, H., et al. (2013), A multi-model assessment of the influence of regional anthropogenic emission reductions on aerosol direct radiative forcing and the role of intercontinental transport, J. Geophys., Res, 118, 700-720, doi:10.1029/2012JD018148.
- Yu, H., et al. (2012), Aerosols from Overseas Rival Domestic Emissions over North America, Science, 337, 566-569, doi:10.1126/science.1217576.
- Yuan, T., et al. (2012), Aerosol indirect effect on tropospheric ozone via lightning, J. Geophys. Res., 117, D18213, doi:10.1029/2012JD017723.
- Zhang, Y., et al. (2012), Aerosol daytime variations over North and South America derived from multiyear AERONET measurements, J. Geophys. Res., 117, D05211, doi:10.1029/2011JD017242.
- Liang, Q., et al. (2011), Reactive nitrogen, ozone and ozone production in the Arctic troposphere and the impact of stratosphere-troposphere exchange, Atmos. Chem. Phys., 11, 13181-13199, doi:10.5194/acp-11-13181-2011.
- Patra, P. K., et al. (2011), TransCom model simulations of CH4 and related species: linking transport, surface flux and chemical loss with CH4 variability in the troposphere and lower stratosphere, Atmos. Chem. Phys., 11, 12813-12837, doi:10.5194/acp-11-12813-2011.
- Yu, H., et al. (2009), Variability of marine aerosol fine-mode fraction and estimates of anthropogenic aerosol component over cloud-free oceans from the Moderate Resolution Imaging Spectroradiometer (MODIS), J. Geophys. Res., 114, D10206, doi:10.1029/2008JD010648.
- Shindell, D., et al. (2008), A multi-model assessment of pollution transport to the Arctic, Atmos. Chem. Phys., 8, 5353-5372, doi:10.5194/acp-8-5353-2008.
- Yu, H., et al. (2008), A satellite-based assessment of transpacific transport of pollution aerosol, J. Geophys. Res., 113, D14S12, doi:10.1029/2007JD009349.
- Luo, C., et al. (2007), Role of ammonia chemistry and coarse mode aerosols in global climatological inorganic aerosol distributions, Atmos. Environ., 41, 2510-2533, doi:10.1016/j.atmosenv.2006.11.030.