Improving satellite-retrieved aerosol microphysical properties using GOCART data
The Multi-angle Imaging SpectroRadiometer (MISR) aboard the NASA Earth Observing System’s Terra satellite can provide more reliable aerosol optical depth (AOD) and better constraints on particle size (Ångström exponent, or ANG), sphericity, and singlescattering albedo (SSA) than many other satellite instruments. However, many aerosol mixtures pass the algorithm acceptance criteria, yielding a poor constraint, when the particle-type information in the MISR radiances is low, typically at low AOD. We investigate adding value to the MISR aerosol product under these conditions by filtering the list of MISR-retrieved mixtures based on agreement between the mixture ANG and absorbing AOD (AAOD) values, and simulated aerosol properties from the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model. MISR– GOCART ANG difference and AAOD ratio thresholds for applying GOCART constraints were determined based on coincident AOD, ANG, and AAOD measurements from the AErosol RObotic NETwork (AERONET). The results were validated by comparing the adjusted MISR aerosol optical properties over the contiguous USA between 2006 and 2009 with additional AERONET data. The correlation coefficient (r) between the adjusted MISR ANG derived from this study and AERONET improves to 0.45, compared to 0.29 for the MISR Version 22 standard product. The ratio of the adjusted MISR AAOD to AERONET increases to 0.74, compared to 0.5 for the MISR operational retrieval. These improvements occur primarily when AOD < 0.2 for ANG and AOD < 0.5 for AAOD. Spatial and temporal differences among the aerosol optical properties of MISR V22, GOCART, and the adjusted MISR are traced to (1) GOCART underestimation of AOD and ANG in polluted regions; (2) aerosol mixtures lacking in the MISR Version 22 algorithm climatology; (3) low MISR sensitivity to particle type under some conditions; and (4) parameters and thresholds used in our method.