Charles Ichoku
Organization:
Howard University
Email:
Business Phone:
Work:
(202) 865-8545
Mobile:
(410) 660-5676
Business Address:
Howard University
1840 7th Street, NW
Washington, DC 20001
United StatesFirst Author Publications:
- Ichoku, C., et al. (2016), and the hydrological cycle in Northern sub-Saharan Africa, Environmental Research Letter, 11, 095005, doi:10.1088/1748-9326/11/9/09500.
- Ichoku, C., et al. (2016), Biomass burning, land-cover change, and the hydrological cycle in Northern sub-Saharan Africa, Environmental Research Letters, 11, 095005, doi:10.1088/1748-9326/11/9/095005.
- Ichoku, C., and L. Ellison (2014), Global top-down smoke-aerosol emissions estimation using satellite fire radiative power measurements, Atmos. Chem. Phys., 14, 6643-6667, doi:10.5194/acp-14-6643-2014.
- Ichoku, C., R. Kahn, and M. Chin (2012), Satellite contributions to the quantitative characterization of biomass burning for climate modeling, Atmos. Res., 111, 1-28, doi:10.1016/j.atmosres.2012.03.007.
Co-Authored Publications:
- Wei, J., et al. (2024), Long-term mortality burden trends attributed to black carbon and PM2·5 from wildfire emissions across the continental USA from 2000 to 2020: a deep learning modelling study.
- Thapa, L., et al. (2023), Heat flux assumptions contribute to overestimation of wildfire smoke injection into the free troposphere, Nature, doi:10.1038/s43247-022-00563-x.
- Peterson, D., et al. (2022), Measurements from inside a Thunderstorm Driven by Wildfire: The 2019 FIREX-AQ Field Experiment, Bull. Amer. Meteor. Soc., 103, E2140-E2167, doi:10.1175/BAMS-D-21-0049.1.
- Black, F. W., et al. (2021), Biomass Burning and Water Balance Dynamics in the Lake Chad Basin in Africa, Earth, 2, 340-356, doi:10.3390/earth2020020.
- Wiggins, E. B., et al. (2021), Reconciling assumptions in bottom-up and top-down approaches for estimating aerosol emission rates from wildland fires using observations from FIREX-AQ, J. Geophys. Res., 126, e2021JD035692, doi:10.1029/2021JD035692.
- Li, Y., et al. (2020), Ensemble PM2.5 Forecasting During the 2018 Camp Fire Event Using the HYSPLIT Transport and Dispersion Model, J. Geophys. Res., 125, e2020JD032768, doi:10.1029/2020JD032768.
- Pan, X., et al. (2020), Six global biomass burning emission datasets: intercomparison and application in one global aerosol model, Atmos. Chem. Phys., 20, 969-994, doi:10.5194/acp-20-969-2020.
- Brook, A., et al. (2019), Structural heterogeneity of vegetation fire ash, Land Degrad Dev., doi:10.1002/ldr.2922.
- Matsui, T., et al. (2019), Impact of radiation frequency, precipitation radiative forcing, and radiation column aggregation on convection-permitting West African monsoon simulations, Clim. Dyn., 13, doi:10.1007/s00382-018-4187-2.
- Pérez-Ramírez, D., et al. (2019), Precipitable water vapor over oceans from the Maritime Aerosol Network: Evaluation of global models and satellite products under clear sky conditions, Atmos. Res., 215, 294-304.
- Iguchi, T., et al. (2018), NU-WRF Aerosol Transport Simulation over West Africa: Effects of Biomass Burning on Smoke Aerosol Distribution, J. Appl. Meteor. Climat., 57, 1551-1573, doi:10.1175/JAMC-D-17-0278.1.
- Pan, X., et al. (2018), Connecting Indonesian Fires and Drought With the Type of El Niño and Phase of the Indian Ocean Dipole During 1979–2016, J. Geophys. Res., 123, 7974-7988, doi:10.1029/2018JD028402.
- Policelli, F., et al. (2018), Lake Chad Total Surface Water Area as Derived from Land Surface Temperature and Radar Remote Sensing Data, Remote Sensing, 10, doi:10.3390/rs10020252.
- Shtober-Zisu, N., et al. (2018), Fire induced rock spalls as long-term traps for ash T a,⁎ b b c d b, Catena, 162, 88-99, doi:10.1016/j.catena.2017.11.021.
- Wang, J., et al. (2018), Mitigating Satellite-Based Fire Sampling Limitations in Deriving Biomass Burning Emission Rates: Application to WRF-Chem Model Over the Northern sub-Saharan African Region, J. Geophys. Res., 123, 507-528.
- Dezfuli, A. K., et al. (2017), Precipitation Characteristics in West and East Africa from Satellite and in Situ Observations, J. Hydrometeorology, 18, 1799-1805, doi:10.1175/JHM-D-17-0068.1.
- Dezfuli, A. K., et al. (2017), Validation of IMERG Precipitation in Africa, J. Hydrometeorology, 18, 2817-2825, doi:10.1175/JHM-D-17-0139.1.
- Polivka, T. N., et al. (2017), Improving Nocturnal Fire Detection with the VIIRS Day-Night Band, Blank 1.
- Smirnov, A., et al. (2017), Maritime Aerosol Network optical depth measurements and comparison with satellite retrievals from various different sensors, In Remote Sensing of Clouds and the Atmosphere XXII (, 10424, 1042402, doi:10.1117/12.2277113.
- Waigl, C. F., et al. (2017), Detecting high and low-intensity fires in Alaska using VIIRS I-band data: An improved operational approach for high latitudes, Remote Sensing of Environment, 199, 389-400, doi:10.1016/j.rse.2017.07.003.
- Polivka, T. N., et al. (2016), Improving Nocturnal Fire Detection with the VIIRS Day-Night Band, IEEE Transactions on Geoscience &, Remote Sensing, 9, 5503-5519.
- Polivka, T. N., et al. (2016), Improving Nocturnal Fire Detection with the VIIRS Day-Night Band, IEEE Transactions on Geoscience &, Remote Sensing, 9, 5503-5519.
- Engelbrecht, F., et al. (2015), Projections of rapidly rising surface temperatures over Africa under, Environ. Res. Lett., 10, 085004, doi:10.1088/1748-9326/10/8/085004.
- Gatebe, C., et al. (2014), Surface albedo darkening from wildfires in northern sub-Saharan Africa, Environ. Res. Lett., 9, 065003, doi:10.1088/1748-9326/9/6/065003.
- Matsui, T., et al. (2014), Current And Future Perspectives Of Aerosol Research At Nasa Goddard Space Flight Center, Bull. Am. Meteorol. Soc., 1-5, doi:10.1175/BAMS-D-13-00153.1.
- Schroeder, W., et al. (2014), Integrated Active Fire Retrievals and Biomass Burning Emissions Using Complementary Near-Coincident Ground, Airborne, and Spaceborne Sensor data, Remote Sensing of Environment, 140, 719-730.
- Zhang, F., et al. (2014), Sensitivity of mesoscale modeling of smoke direct radiative effect to the emission inventory: A case study in northern sub-Saharan African region, Environmental Research Letter, 9, 075002, doi:10.1088/1748-9326/9/7/075002.
- Anderson, J. C., et al. (2013), Long-term statistical assessment of Aqua-MODIS aerosol optical depth over coastal regions: bias characteristics and uncertainty sources, Tellus, 65, 20805.
- Peterson, D., et al. (2013), A sub-pixel-based calculation of fire radiative power from MODIS observations: 1 Algorithm development and initial assessment, Remote Sensing of Environment, 129, 262-279, doi:10.1016/j.rse.2012.10.036.
- Petrenko, M., and C. Ichoku (2013), Coherent uncertainty analysis of aerosol measurements from multiple satellite sensors, Atmos. Chem. Phys., 13, 6777-6805, doi:10.5194/acp-13-6777-2013.
- Yang, Z., et al. (2013), Mesoscale modeling and satellite observation of transport and mixing of smoke and dust particles over northern sub-Saharan African region, J. Geophys. Res., 118, 12139-12157, doi:10.1002/2013JD020644.
- Gatebe, C., et al. (2012), Taking the pulse of pyrocumulus clouds, Atmos. Environ., 52, 121-130, doi:10.1016/j.atmosenv.2012.01.045.
- Val Martin, et al. (2012), Space-based observational constraints for 1-D fire smoke plume-rise models, J. Geophys. Res., 117, D22204, doi:10.1029/2012JD018370.
- Petrenko, M., C. Ichoku, and G. G. Leptoukh (2012), Multi-sensor Aerosol Products Sampling System (MAPSS), Atmos. Meas. Tech., 5, 913-926, doi:10.5194/amt-5-913-2012.
- Henderson, S. B., et al. (2010), International Journal of Wildland Fire 2010, 19, 844–852 www.publish.csiro.au/journals/ijwf The validity and utility of MODIS data for simple estimation of area burned and aerosols emitted by wildfire events, www.publish.csiro.au/journals/ijwf, 19, 844-852.
- Koukouli, M. E., et al. (2010), Signs of a negative trend in the MODIS aerosol optical depth over the Southern Balkans, Atmos. Environ., 44, 1219-1228, doi:10.1016/j.atmosenv.2009.11.024.
- Levy, R., et al. (2010), Global evaluation of the Collection 5 MODIS dark-target aerosol products over land, Atmos. Chem. Phys., 10, 10399-10420, doi:10.5194/acp-10-10399-2010.
- Peterson, D., et al. (2010), Effects of lightning and other meteorological factors on fire activity in the North American boreal forest: implications for fire weather forecasting, Atmos. Chem. Phys., 10, 6873-6888, doi:10.5194/acp-10-6873-2010.
- El-Askary, H., et al. (2009), Transport of dust and anthropogenic aerosols across Alexandria, Egypt, Ann. Geophys., 27, 2869-2879.
- Zerefos, C. S., et al. (2009), Solar dimming and brightening over Thessaloniki, Greece, and Beijing, China, Tellus, doi:10.1111/j.1600-0889.2009.00425.x.
- Remer, L., et al. (2008), Global aerosol climatology from the MODIS satellite sensors, J. Geophys. Res., 113, D14S07, doi:10.1029/2007JD009661.
- Levy, et al. (2003), Evaluation of the MODIS retrievals of dust aerosol over the ocean during PRIDE, J. Geophys. Res., 108, D19, doi:10.1029/2002JD002460.