Oleg Dubovik
Organization:
NASA Goddard Space Flight Center
Email:
Business Address:
Greenbelt, MD
United StatesFirst Author Publications:
- Dubovik, O., et al. (2019), Polarimetric remote sensing of atmospheric aerosols: Instruments, methodologies, results, and perspectives, J. Quant. Spectrosc. Radiat. Transfer, 224, 474-511, doi:10.1016/j.jqsrt.2018.11.024.
- Dubovik, O., et al. (2008), Retrieving global aerosol sources from satellites using inverse modeling, Atmos. Chem. Phys., 8, 209-250, doi:10.5194/acp-8-209-2008.
- Dubovik, O., et al. (2002), Variability of absorption and optical properties of key aerosol types observed in worldwide locations, J. Atmos. Sci., 59, 590-608.
- Dubovik, O., and M. D. King (2000), A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements, J. Geophys. Res., 105, 20673-20696.
- Dubovik, O., et al. (2000), Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance measurements, J. Geophys. Res., 105, 9791-9806, doi:10.1029/2000JD900040.
Co-Authored Publications:
- Chen, X., et al. (2022), Analytical Prediction of Scattering Properties of Spheroidal Dust Particles With Machine Learning, Geophys. Res. Lett., 49, e2021GL097548, doi:10.1029/2021GL097548.
- Li, J. 1. ✉., et al. (2022), in the climate system REVIEwS, Nature, doi:10.1038/scattering.
- Xu, F., et al. (2021), A Combined Lidar-Polarimeter Inversion Approach for Aerosol Remote Sensing Over Ocean, Front. Remote Sens., 2, 1-24, doi:10.3389/frsen.2021.620871.
- Li, J., et al. (2020), Synergy of Satellite‐ and Ground‐Based Aerosol Optical Depth Measurements Using an Ensemble Kalman Filter Approach, J. Geophys. Res., 125, 1-17, doi:10.1029/2019JD031884.
- Sogacheva, L., et al. (2020), Merging regional and global aerosol optical depth records from major available satellite products, Atmos. Chem. Phys., 20, 2031-2056, doi:10.5194/acp-20-2031-2020.
- Chen, C., et al. (2019), Constraining global aerosol emissions using POLDER/PARASOL satellite remote sensing observations, Atmos. Chem. Phys., 19, 14585-14606, doi:10.5194/acp-19-14585-2019.
- Frouin, R., et al. (2019), Atmospheric Correction of Satellite Ocean-Color Imagery During the PACE Era, Front. Earth Sci., 7, 145, doi:10.3389/feart.2019.00145.
- Li, L., et al. (2019), Retrieval of aerosol components directly from satellite and ground-based measurements, Atmos. Chem. Phys., 19, 13409-13443, doi:10.5194/acp-19-13409-2019.
- Remer, L., et al. (2019), Retrieving Aerosol Characteristics From the PACE Mission, Part 2: Multi-Angle and Polarimetry, Multi-Angle and Polarimetry. Front. Environ. Sci., 7, 94, doi:10.3389/fenvs.2019.00094.
- Schuster, G., et al. (2019), A Laboratory Experiment for the Statistical Evaluation of Aerosol Retrieval (STEAR) Algorithms, Remote Sensing, 11, doi:10.3390/rs11050498.
- Sayer, A. M., et al. (2018), Validation of SOAR VIIRS Over-Water Aerosol Retrievals and Context Within the Global Satellite Aerosol Data Record, J. Geophys. Res., 123, doi:10.1029/2018JD029465.
- Espinosa, W. R., et al. (2017), Retrievals of aerosol optical and microphysical properties from Imaging Polar Nephelometer scattering measurements, Atmos. Meas. Tech., 10, 811-824, doi:10.5194/amt-10-811-2017.
- Li, J., et al. (2017), Reducing multisensor monthly mean aerosol optical depth uncertainty: 2. Optimal locations for potential ground observation deployments, J. Geophys. Res., 122, doi:10.1002/2016JD026308.
- Torres, B., et al. (2017), Advanced characterisation of aerosol size properties from measurements of spectral optical depth using the GRASP algorithm, Atmos. Meas. Tech., 10, 3743-3781, doi:10.5194/amt-10-3743-2017.
- Li, J., et al. (2016), Reducing multisensor satellite monthly mean aerosol optical depth uncertainty: 1. Objective assessment of current AERONET locations, J. Geophys. Res., 121, doi:10.1002/2016JD025469.
- Schuster, G., O. Dubovik, and A. Arola (2016), Remote sensing of soot carbon – Part 1: Distinguishing different absorbing aerosol species, Atmos. Chem. Phys., 16, 1565-1585, doi:10.5194/acp-16-1565-2016.
- Schuster, G., et al. (2016), Remote sensing of soot carbon – Part 2: Understanding the absorption Ångström exponent, Atmos. Chem. Phys., 16, 1587-1602, doi:10.5194/acp-16-1587-2016.
- Xu, X., et al. (2015), Retrieval of aerosol microphysical properties from AERONET photopolarimetric measurements: 2. A new research algorithm and case demonstration, J. Geophys. Res., 120, 7079-7098, doi:10.1002/2015JD023113.
- King, M. D., and O. Dubovik (2013), Determination of aerosol optical properties from inverse methods, Aerosol Remote Sensing, 101-136.
- King, M. D., and O. Dubovik (2013), Determination of aerosol optical properties from inverse methods, in J. Lenoble et al. (eds.), Aerosol Remote Sensing, Springer Praxis Books, doi:10.1007/978-3-642-17725-5_5.
- Li, Z., et al. (2013), Aerosol physical and chemical properties retrieved from ground-based remote sensing measurements during heavy haze days in Beijing winter, Atmos. Chem. Phys., 13, 10171-10183, doi:10.5194/acp-13-10171-2013.
- Mallet, M., et al. (2013), Absorption properties of Mediterranean aerosols obtained from multi-year ground-based remote sensing observations, Atmos. Chem. Phys., 13, 9195-9210, doi:10.5194/acp-13-9195-2013.
- Waquet, F., et al. (2013), Retrieval of aerosol microphysical and optical properties above liquid clouds from POLDER/PARASOL polarization measurements, Atmos. Meas. Tech., 6, 991-1016, doi:10.5194/amt-6-991-2013.
- Ginoux, P., et al. (2012), Mixing of dust and NH3 observed globally over anthropogenic dust sources, Atmos. Chem. Phys., 12, 7351-7363, doi:10.5194/acp-12-7351-2012.
- Schuster, G., et al. (2012), Comparison of CALIPSO aerosol optical depth retrievals to AERONET measurements, and a climatology for the lidar ratio of dust, Atmos. Chem. Phys., 12, 7431-7452, doi:10.5194/acp-12-7431-2012.
- Veselovskii, I., et al. (2012), Linear estimation of particle bulk parameters from multi-wavelength lidar measurements, Atmos. Meas. Tech., 5, 1135-1145, doi:10.5194/amt-5-1135-2012.
- Lyapustin, A., et al. (2011), Reduction of aerosol absorption in Beijing since 2007 from MODIS and AERONET, Geophys. Res. Lett., 38, L10803, doi:10.1029/2011GL047306.
- Gatebe, C., et al. (2010), Simultaneous retrieval of aerosol and surface optical properties from combined airborne- and ground-based direct and diffuse radiometric measurements, Atmos. Chem. Phys., 10, 1-18, doi:10.5194/acp-10-1-2010.
- Russell, P. B., et al. (2010), Absorption Angstrom Exponent in AERONET and related data as an indicator of aerosol composition, Atmos. Chem. Phys., 10, 1155-1169, doi:10.5194/acp-10-1155-2010.
- Veselovskii, I., et al. (2010), Application of randomly oriented spheroids for retrieval of dust particle parameters from multiwavelength lidar measurements, J. Geophys. Res., 115, D21203, doi:10.1029/2010JD014139.
- Chin, M., et al. (2009), Light absorption by pollution, dust, and biomass burning aerosols: a global model study and evaluation with AERONET measurements, Ann. Geophys., 27, 3439-3464.
- Koch, D., et al. (2009), Evaluation of black carbon estimations in global aerosol models, Atmos. Chem. Phys., 9, 9001-9026, doi:10.5194/acp-9-9001-2009.
- Schuster, G., B. Lin, and O. Dubovik (2009), Remote sensing of aerosol water uptake, Geophys. Res. Lett., 36, L03814, doi:10.1029/2008GL036576.
- Schuster, G., B. Lin, and O. Dubovik (2009), Remote sensing of aerosol water uptake, Geophys. Res. Lett., 36, L03814, doi:10.1029/2008GL036576.
- Vermote, E. F., et al. (2009), An approach to estimate global biomass burning emissions of organic and black carbon from MODIS fire radiative power, J. Geophys. Res., 114, D18205, doi:10.1029/2008JD011188.
- Eck, T. F., et al. (2008), Spatial and temporal variability of column-integrated aerosol optical properties in the southern Arabian Gulf and United Arab Emirates in summer, J. Geophys. Res., 113, D01204, doi:10.1029/2007JD008944.
- Levy, R., L. Remer, and O. Dubovik (2007), Global aerosol optical properties and application to Moderate Resolution Imaging Spectroradiometer aerosol retrieval over land, J. Geophys. Res., 112, D13210, doi:10.1029/2006JD007815.
- Weaver, C., et al. (2007), Direct Insertion of MODIS Radiances in a Global Aerosol Transport Model, J. Atmos. Sci., 64, 808-826, doi:10.1175/JAS3838.1.
- Schuster, G., O. Dubovik, and B. Holben (2006), Angstrom exponent and bimodal aerosol size distributions, J. Geophys. Res., 111, D07207, doi:10.1029/2005JD006328.
- Anderson, et al. (2005), Testing the MODIS satellite retrieval of aerosol fine-mode fraction, J. Geophys. Res., 110, D18204, doi:10.1029/2005JD005978.
- Kahn, R., et al. (2005), MISR Calibration and Implications for Low-Light-Level Aerosol Retrieval over Dark Water, J. Atmos. Sci., 62, 1032-1052.
- Schuster, G., et al. (2005), Inferring black carbon content and specific absorption from Aerosol Robotic Network (AERONET) aerosol retrievals, J. Geophys. Res., 110, D10S17, doi:10.1029/2004JD004548.
- Zhou, M., et al. (2005), A normalized description of the direct effect of key aerosol types on solar radiation as estimated from Aerosol Robotic Network aerosols and Moderate Resolution Imaging Spectroradiometer albedos, J. Geophys. Res., 110, D19202, doi:10.1029/2005JD005909.
- Russell, P. B., et al. (2004), Sunlight transmission through desert dust and marine aerosols: Diffuse light corrections to Sun photometry and pyrheliometry, J. Geophys. Res., 109, D08207, doi:10.1029/2003JD004292.
- Yu, H., et al. (2004), Direct radiative effect of aerosols as determined from a combination of MODIS retrievals and GOCART simulations, J. Geophys. Res., 109, D03206, doi:10.1029/2003JD003914.
- Zhao, T. X.-P., et al. (2004), Regional evaluation of an advanced very high resolution radiometer (AVHRR) two-channel aerosol retrieval algorithm, J. Geophys. Res., 109, D02204, doi:10.1029/2003JD003817.
- Eck, T. F., et al. (2003), Variability of biomass burning aerosol optical characteristics in southern Africa during the SAFARI 2000 dry season campaign and a comparison of single scattering albedo estimates from radiometric measurements, J. Geophys. Res., 108, 8477, doi:10.1029/2002JD002321.
- Kinne, S., et al. (2003), Monthly averages of aerosol properties: A global comparison among models, satellite data, and AERONET ground data, J. Geophys. Res., 108, 4634, doi:10.1029/2001JD001253.
- Livingston, J. M., et al. (2003), Airborne sunphotometer measurements of aerosol optical depth and columnar water vapor during the Puerto Rico Dust Experiment, and comparison with land, aircraft, and satellite measurements, J. Geophys. Res., 108, D19, doi:10.1029/2002JD002520.
- Redemann, J., et al. (2003), Clear-column closure studies of aerosols and water vapor aboard the NCAR C-130 during ACE-Asia, 2001, J. Geophys. Res., 108, 8655, doi:10.1029/2003JD003442.
- Reid, J. S., et al. (2003), Comparison of size and morphological measurements of coarse mode dust particles from Africa, J. Geophys. Res., 108, 8593, doi:10.1029/2002JD002485.
- Sato, M., et al. (2003), Global atmospheric black carbon inferred from AERONET, Proc. Natl. Acad. Sci., 100, doi:10.1073/pnas.0731897100.
- Schmid, B., et al. (2003), Column closure studies of lower tropospheric aerosol and water vapor during ACE-Asia using airborne Sun photometer and airborne in situ and ship-based lidar measurements, J. Geophys. Res., 108, 8656, doi:10.1029/2002JD003361.
- Ginoux, P., et al. (2001), Sources and global distributions of dust aerosols simulated with the GOCART model, J. Geophys. Res., 106, 20,255-20,273.
- Welton, E. J., et al. (2000), Ground-based lidar measurements of aerosols during ACE-2: Lidar description, results, and comparisons with other ground-based and airborne measurements, Tellus, 52, 636-651.