Alexander Smirnov
Organization:
NASA Goddard Space Flight Center
Science Systems and Applications, Inc.
Email:
Business Phone:
Work:
(301) 614-6626
Business Address:
NASA/GSFC, code 618
Greenbelt, MD 20771
United StatesFirst Author Publications:
- Smirnov, A., et al. (2017), Maritime Aerosol Network optical depth measurements and comparison with satellite retrievals from various different sensors, In Remote Sensing of Clouds and the Atmosphere XXII (, 10424, 1042402, doi:10.1117/12.2277113.
- Smirnov, A., et al. (2012), Effect of wind speed on aerosol optical depth over remote oceans, based on data from the Maritime Aerosol Network, Atmos. Meas. Tech., 5, 377-388, doi:10.5194/amt-5-377-2012.
- Smirnov, A., et al. (2011), Maritime aerosol network as a component of AERONET – first results and comparison with global aerosol models and satellite retrievals, Atmos. Meas. Tech., 4, 583-597, doi:10.5194/amt-4-583-2011.
- Smirnov, A., et al. (2006), Ship-based aerosol optical depth measurements in the Atlantic Ocean: Comparison with satellite retrievals and GOCART model, Geophys. Res. Lett., 33, L14817, doi:10.1029/2006GL026051.
Co-Authored Publications:
- Reid, J. S., et al. (2022), A Coupled Evaluation of Operational MODIS and Model Aerosol Products for Maritime Environments Using Sun Photometry: Evaluation of the Fine and Coarse Mode, Evaluation of the Fine and Coarse Mode. Remote Sens., 14, 2978, doi:10.3390/rs14132978.
- Eck, T. F., et al. (2020), Influence of cloud, fog, and high relative humidity during pollution transport events in South Korea: Aerosol properties and PM2.5 variability, Atmos. Environ., 232, 117530, doi:10.1016/j.atmosenv.2020.117530.
- Bian, H., et al. (2019), Observationally constrained analysis of sea salt aerosol in the marine atmosphere, Atmos. Chem. Phys., 19, 10773-10785, doi:10.5194/acp-19-10773-2019.
- Pérez-Ramírez, D., et al. (2019), Precipitable water vapor over oceans from the Maritime Aerosol Network: Evaluation of global models and satellite products under clear sky conditions, Atmos. Res., 215, 294-304.
- Holben, B., et al. (2018), An overview of mesoscale aerosol processes, comparisons, and validation studies from DRAGON networks, Atmos. Chem. Phys., 18, 655-671, doi:10.5194/acp-18-655-2018.
- Sayer, A. M., et al. (2017), Satellite Ocean Aerosol Retrieval (SOAR) Algorithm Extension to S-NPP VIIRS as Part of the “Deep Blue” Aerosol Project, J. Geophys. Res., 122, doi:10.1002/2017JD027412.
- Sayer, A. M., et al. (2017), Evaluation of NASA Deep Blue/SOAR aerosol retrieval algorithms applied to AVHRR measurements, J. Geophys. Res., 122, doi:10.1002/2017JD026934.
- Reid, J., et al. (2016), Aerosol meteorology of Maritime Continent for the 2012 7SEAS southwest monsoon intensive study – Part 2: Philippine receptor observations of fine-scale aerosol behavior, Atmos. Chem. Phys., 16, 14057-14078, doi:10.5194/acp-16-14057-2016.
- Christensen, M., et al. (2015), A theoretical study of the effect of subsurface oceanic bubbles on the enhanced aerosol optical depth band over the southern oceans as detected from MODIS and MISR, Atmos. Meas. Tech., 8, 2149-2160, doi:10.5194/amt-8-2149-2015.
- Reid, J., et al. (2015), Observations of the temporal variability in aerosol properties and their relationships to meteorology in the summer monsoonal South China Sea/East Sea, Atmos. Chem. Phys., 15, 1745-1768, doi:10.5194/acp-15-1745-2015.
- Tomasi, C., et al. (2015), Aerosol remote sensing in polar regions, Earth-Science Reviews, 140, 108-157, doi:10.1016/j.earscirev.2014.11.001.
- Eck, T. F., et al. (2014), Observations of rapid aerosol optical depth enhancements in the vicinity of polluted cumulus clouds, Atmos. Chem. Phys., 14, 11633-11656, doi:10.5194/acp-14-11633-2014.
- Arola, A., et al. (2013), Influence of observed diurnal cycles of aerosol optical depth on aerosol direct radiative effect, Atmos. Chem. Phys., 13, 7895-7901, doi:10.5194/acp-13-7895-2013.
- Huang, J., et al. (2012), Evaluations of cirrus contamination and screening in ground aerosol observations using collocated lidar systems, J. Geophys. Res., 117, D15204, doi:10.1029/2012JD017757.
- Sayer, A. M., et al. (2012), SeaWiFS Ocean Aerosol Retrieval (SOAR): Algorithm, validation, and comparison with other data sets, J. Geophys. Res., 117, D03206, doi:10.1029/2011JD016599.
- Zhang, Y., et al. (2012), Aerosol daytime variations over North and South America derived from multiyear AERONET measurements, J. Geophys. Res., 117, D05211, doi:10.1029/2011JD017242.
- Gautam, R., et al. (2011), Accumulation of aerosols over the Indo-Gangetic plains and southern slopes of the Himalayas: distribution, properties and radiative effects during the 2009 pre-monsoon season, Atmos. Chem. Phys., 11, 12841-12863, doi:10.5194/acp-11-12841-2011.
- Kim, D., et al. (2011), Dust optical properties over North Africa and Arabian Peninsula derived from the AERONET dataset, Atmos. Chem. Phys., 11, 10733-10741, doi:10.5194/acp-11-10733-2011.
- Lapina, K., et al. (2011), Investigating organic aerosol loading in the remote marine environment, Atmos. Chem. Phys., 11, 8847-8860, doi:10.5194/acp-11-8847-2011.
- Lyapustin, A., et al. (2011), Reduction of aerosol absorption in Beijing since 2007 from MODIS and AERONET, Geophys. Res. Lett., 38, L10803, doi:10.1029/2011GL047306.
- Kahn, R., et al. (2010), Multiangle Imaging SpectroRadiometer global aerosol product assessment by comparison with the Aerosol Robotic Network, J. Geophys. Res., 115, D23209, doi:10.1029/2010JD014601.
- Alexandrov, M. D., et al. (2009), Columnar water vapor retrievals from multifilter rotating shadowband radiometer data, J. Geophys. Res., 114, D02306, doi:10.1029/2008JD010543.
- Livingston, J. M., et al. (2009), Comparison of aerosol optical depths from the Ozone Monitoring Instrument (OMI) on Aura with results from airborne sunphotometry, other space and ground measurements during MILAGRO/INTEX-B, Atmos. Chem. Phys., 9, 6743-6765, doi:10.5194/acp-9-6743-2009.
- Eck, T. F., et al. (2008), Spatial and temporal variability of column-integrated aerosol optical properties in the southern Arabian Gulf and United Arab Emirates in summer, J. Geophys. Res., 113, D01204, doi:10.1029/2007JD008944.
- O’Neill, N. T., et al. (2008), Coarse mode optical information retrievable using ultraviolet to short-wave infrared Sun photometry: Application to United Arab Emirates Unified Aerosol Experiment data, J. Geophys. Res., 113, D05212, doi:10.1029/2007JD009052.
- Tian, B., et al. (2008), Does the Madden-Julian Oscillation influence aerosol variability?, J. Geophys. Res., 113, D12215, doi:10.1029/2007JD009372.
- Schmid, B., et al. (2006), How well do state-of-the-art techniques measuring the vertical profile of tropospheric aerosol extinction compare?, J. Geophys. Res., 111.
- Kahn, R., et al. (2005), MISR Calibration and Implications for Low-Light-Level Aerosol Retrieval over Dark Water, J. Atmos. Sci., 62, 1032-1052.
- Schmid, B., et al. (2005), How well can we measure the vertical profile of tropospheric aerosol extinction?, J. Geophys. Res., 2005JD005837, D05S07, doi:10.1029/2005JD005837.
- Zhao, T. X.-P., et al. (2004), Regional evaluation of an advanced very high resolution radiometer (AVHRR) two-channel aerosol retrieval algorithm, J. Geophys. Res., 109, D02204, doi:10.1029/2003JD003817.
- Eck, T. F., et al. (2003), Variability of biomass burning aerosol optical characteristics in southern Africa during the SAFARI 2000 dry season campaign and a comparison of single scattering albedo estimates from radiometric measurements, J. Geophys. Res., 108, 8477, doi:10.1029/2002JD002321.
- Kinne, S., et al. (2003), Monthly averages of aerosol properties: A global comparison among models, satellite data, and AERONET ground data, J. Geophys. Res., 108, 4634, doi:10.1029/2001JD001253.
- Livingston, J. M., et al. (2003), Airborne sunphotometer measurements of aerosol optical depth and columnar water vapor during the Puerto Rico Dust Experiment, and comparison with land, aircraft, and satellite measurements, J. Geophys. Res., 108, D19, doi:10.1029/2002JD002520.
- Reid, J. S., et al. (2003), Comparison of size and morphological measurements of coarse mode dust particles from Africa, J. Geophys. Res., 108, 8593, doi:10.1029/2002JD002485.
- Reid, J. S., et al. (2003), Measurements of Saharan dust by airborne and ground-based remote sensing methods during the Puerto Rico Dust Experiment (PRIDE), J. Geophys. Res., 108, 8586, doi:10.1029/2002JD002493.
- Reid, J., et al. (2003), Analysis of measurements of Saharan dust by airborne and groundbased remote sensing methods during the Puerto Rico Dust Experiment (PRIDE), J. Geophys. Res., 108, 8586, doi:10.1029/2002JD002493.
- Dubovik, O., et al. (2002), Variability of absorption and optical properties of key aerosol types observed in worldwide locations, J. Atmos. Sci., 59, 590-608.
- Dubovik, O., et al. (2000), Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance measurements, J. Geophys. Res., 105, 9791-9806, doi:10.1029/2000JD900040.
- Ferrare, R., et al. (2000), Comparisons of aerosol optical properties and water vapor among ground and airborne lidars and sun photometers during TARFOX, J. Geophys. Res., 105, 9917-9933.
- Welton, E. J., et al. (2000), Ground-based lidar measurements of aerosols during ACE-2: Lidar description, results, and comparisons with other ground-based and airborne measurements, Tellus, 52, 636-651.
- Tanré, D., et al. (1999), Retrieval of aerosol optical thickness and size distribution over ocean from the MODIS airborne simulator during TARFOX, J. Geophys. Res., 104, 2261-2278.