John M. Livingston
Organization:
SRI International, Inc.
Email:
Business Phone:
Work:
(650) 859-4174
Mobile:
(650) 468-3148
Fax:
(650) 859-2925
Business Address:
333 Ravenswood Avenue
G277
Menlo Park, CA 94025
United StatesFirst Author Publications:
- Livingston, J. M., et al. (2014), Comparison of MODIS 3 km and 10 km resolution aerosol optical depth retrievals over land with airborne sunphotometer measurements during ARCTAS summer 2008, Atmos. Chem. Phys., 14, 2015-2038, doi:10.5194/acp-14-2015-2014.
- Livingston, J. M., et al. (2013), Comparison of MODIS 3 km and 10 km resolution aerosol optical depth retrievals over land with airborne sunphotometer measurements during ARCTAS summer 2008, Atmos. Chem. Phys. Discuss., 13, 15007-15059.
- Livingston, J. M., et al. (2009), Comparison of aerosol optical depths from the Ozone Monitoring Instrument (OMI) on Aura with results from airborne sunphotometry, other space and ground measurements during MILAGRO/INTEX-B, Atmos. Chem. Phys., 9, 6743-6765, doi:10.5194/acp-9-6743-2009.
- Livingston, J. M., et al. (2008), Comparison of Water Vapor Measurements by Airborne Sun Photometer and Diode Laser Hygrometer on the NASA DC-8, J. Atmos. Oceanic Technol., 25, 1733-1743, doi:10.1175/2008JTECHA1047.1.
- Livingston, J. M., et al. (2008), Comparison of MODIS 3 km and 10 km resolution aerosol optical depth retrievals over land with airborne sunphotometer measurements during ARCTAS summer, Atmos. Chem. Phys., 14, 2015-2038, doi:10.5194/acp-14-2015-2014.
- Livingston, J. M., et al. (2007), Comparison of water vapor measurements by airborne Sun photometer and near-coincident in situ and satellite sensors during INTEX/ITCT 2004, J. Geophys. Res., 112, D12S16, doi:10.1029/2006JD007733.
- Livingston, J. M., et al. (2005), Retrieval of ozone column content from airborne Sun photometer measurements during SOLVE II: Comparison with coincident satellite and aircraft measurements, Atmos. Chem. Phys., 5, 2035-2054.
- Livingston, J. M., et al. (2003), Airborne sunphotometer measurements of aerosol optical depth and columnar water vapor during the Puerto Rico Dust Experiment, and comparison with land, aircraft, and satellite measurements, J. Geophys. Res., 108, D19, doi:10.1029/2002JD002520.
- Livingston, J. M., et al. (2000), Shipboard sunphotometer measurements of aerosol optical depth spectra and columnar water vapor during ACE 2 and comparison to selected land, ship, aircraft, and satellite measurements, Tellus, 52, 594-619.
Co-Authored Publications:
- Kacenelenbogen, M. S., et al. (2019), Estimations of global shortwave direct aerosol radiative effects above opaque water clouds using a combination of A-Train satellite sensors, Atmos. Chem. Phys., 19, 4933-4962, doi:10.5194/acp-19-4933-2019.
- Star, T., et al. (2018), 4STAR_codes: 4STAR processing codes, Zenodo, doi:10.5281/zenodo.1492912.
- Jethva, H., et al. (2016), Validating MODIS above-cloud aerosol optical depth retrieved from “color ratio” algorithm using direct measurements made by NASA's airborne AATS and 4STAR sensors, Atmos. Meas. Tech., 9, 5053-5062, doi:10.5194/amt-9-5053-2016.
- Jethva, H., et al. (2016), Validating MODIS above-cloud aerosol optical depth retrieved from “color ratio” algorithm using direct measurements made by NASA’s airborne AATS and 4STAR sensors, Atmos. Meas. Tech., 9, 5053-5062, doi:10.5194/amt-9-5053-2016.
- Russell, P. B., et al. (2014), A Multi-Parameter Aerosol Classification Method and its Application to Retrievals from Spaceborne Polarimetry, Paper #: 2013JD021411R, J. Geophys. Res..
- Segal-Rozenhaimer, M., et al. (2014), Tracking elevated pollution layers with a newly developed hyperspectral Sun/Sky spectrometer (4STAR): Results from the TCAP 2012 and 2013 campaigns, J. Geophys. Res., 119, doi:10.1002/2013JD020884.
- Dunagan, S. E., et al. (2013), Spectrometer for Sky-Scanning Sun-Tracking Atmospheric Research (4STAR): Instrument Technology, Remote Sens., 5, 3872-3895, doi:10.3390/rs5083872.
- Segal-Rozenhaimer, M., et al. (2013), Retrieval of cirrus properties by Sun photometry: A new perspective on an old issue, J. Geophys. Res., 118, 4503-4520, doi:10.1002/jgrd.50185.
- Shinozuka, Y., et al. (2013), Hyperspectral aerosol optical depths from TCAP flights, J. Geophys. Res., 118, 12,180-12,194, doi:10.1002/2013JD020596.
- Redemann, J., et al. (2012), The comparison of MODIS-Aqua (C5) and CALIOP (V2 & V3) aerosol optical depth, Atmos. Chem. Phys., 12, 3025-3043, doi:10.5194/acp-12-3025-2012.
- Schmid, B., et al. (2011), 4STAR Spectrometer for Sky-scanning Sun-tracking Atmospheric Research: Results from Test-flight Series, Paper A14E-05, American Geophysical Union Fall Meeting, San Francisco, 5-9 December 2011.
- Shinozuka, Y., et al. (2011), Airborne observation of aerosol optical depth during ARCTAS: vertical profiles, inter-comparison and fine-mode fraction, Atmos. Chem. Phys., 11, 3673-3688, doi:10.5194/acp-11-3673-2011.
- Bergstrom, R. W., et al. (2010), Aerosol spectral absorption in the Mexico City area: results from airborne measurements during MILAGRO/INTEX B, Atmos. Chem. Phys., 10, 6333-6343, doi:10.5194/acp-10-6333-2010.
- Coddington, O. M., et al. (2010), Examining the impact of overlying aerosols on the retrieval of cloud optical properties from passive remote sensing, J. Geophys. Res., 115, D10211, doi:10.1029/2009JD012829.
- Russell, P. B., et al. (2010), Absorption Angstrom Exponent in AERONET and related data as an indicator of aerosol composition, Atmos. Chem. Phys., 10, 1155-1169, doi:10.5194/acp-10-1155-2010.
- Schmidt, S., et al. (2010), A new method for deriving aerosol solar radiative forcing and its first application within MILAGRO/INTEX-B, Atmos. Chem. Phys., 10, 7829-7843, doi:10.5194/acp-10-7829-2010.
- Redemann, J., et al. (2009), Testing aerosol properties in MODIS Collection 4 and 5 using airborne sunphotometer observations in INTEX-B/MILAGRO, Atmos. Chem. Phys., 9, 8159-8172, doi:10.5194/acp-9-8159-2009.
- Redemann, J., et al. (2009), Case studies of aerosol remote sensing in the vicinity of clouds, J. Geophys. Res., 114, D06209, doi:10.1029/2008JD010774.
- Rogers, R. R., et al. (2009), NASA LaRC airborne high spectral resolution lidar aerosol measurements during MILAGRO: observations and validation, Atmos. Chem. Phys., 9, 4811-4826, doi:10.5194/acp-9-4811-2009.
- Russell, P. B., et al. (2007), Multi-grid-cell validation of satellite aerosol property retrievals in INTEX/ITCT/ICARTT 2004, J. Geophys. Res., 112, D12S09, doi:10.1029/2006JD007606.
- Redemann, J., et al. (2006), Assessment of MODIS-derived visible and near-IR aerosol optical properties and their spatial variability in the presence of mineral dust, Geophys. Res. Lett., 33, L18814, doi:10.1029/2006GL026626.
- Redemann, J., et al. (2006), Airborne measurements of spectral direct aerosol radiative forcing in the Intercontinental chemical Transport Experiment/Intercontinental Transport and Chemical Transformation of anthropogenic pollution, 2004, J. Geophys. Res., 111, D14210, doi:10.1029/2005JD006812.
- Chu, D. A., et al. (2005), Evaluation of aerosol properties over ocean from Moderate Resolution Imaging Spectroradiometer (MODIS) during ACE-Asia, J. Geophys. Res., 110, D07308, doi:10.1029/2004JD005208.
- Pitts, M., et al. (2005), Ozone observations by the Gas and Aerosol Measurement Sensor during SOLVE II, Atmos. Chem. Phys. Discuss., 5, 9953-9992.
- Redemann, J., et al. (2005), Suborbital measurements of spectral aerosol optical depth and its variability at sub-satellite grid scales in support of CLAMS, 2001, J. Atmos. Sci., 62, 993-1007, doi:10.1175/JAS3387.1.
- Russell, P. B., et al. (2005), Aerosol optical depth measurements by airborne sun photometer in SOLVE II: Comparisons to SAGE III, POAM III and airborne spectrometer measurements, Atmos. Chem. Phys., 5, 1311-1339, doi:10.5194/acp-5-1311-2005.
- Swartz, W. H., et al. (2005), Column ozone and aerosol optical properties retrieved from direct solar irradiance measurements during SOLVE II, Atmos. Chem. Phys., ID.
- Kahn, R., et al. (2004), Environmental snapshots from ACE-Asia, J. Geophys. Res., 109, D19S14, doi:10.1029/2003JD004339.
- Kahn, R., et al. (2004), Environmental snapshots from ACE-Asia, J. Geophys. Res., 109, D19S14, doi:10.1029/2003JD004339.
- Russell, P. B., et al. (2004), Sunlight transmission through desert dust and marine aerosols: Diffuse light corrections to Sun photometry and pyrheliometry, J. Geophys. Res., 109, D08207, doi:10.1029/2003JD004292.
- Colarco, P. R., et al. (2003), Saharan dust transport to the Caribbean during PRIDE: 2. Transport, vertical profiles, and deposition in simulations of in situ and remote sensing observations, J. Geophys. Res., 108, 8590, doi:10.1029/2002JD002659.
- Levy, et al. (2003), Evaluation of the MODIS retrievals of dust aerosol over the ocean during PRIDE, J. Geophys. Res., 108, D19, doi:10.1029/2002JD002460.
- Murayama, et al. (2003), An intercomparison of lidar-derived aerosol optical properties with airborne measurements near Tokyo during ACE-Asia, J. Geophys. Res., 108, 8651, doi:10.1029/2002JD003259.
- Redemann, J., et al. (2003), Clear-column closure studies of aerosols and water vapor aboard the NCAR C-130 during ACE-Asia, 2001, J. Geophys. Res., 108, 8655, doi:10.1029/2003JD003442.
- Reid, J. S., et al. (2003), Comparison of size and morphological measurements of coarse mode dust particles from Africa, J. Geophys. Res., 108, 8593, doi:10.1029/2002JD002485.
- Reid, J. S., et al. (2003), Measurements of Saharan dust by airborne and ground-based remote sensing methods during the Puerto Rico Dust Experiment (PRIDE), J. Geophys. Res., 108, 8586, doi:10.1029/2002JD002493.
- Reid, J., et al. (2003), Analysis of measurements of Saharan dust by airborne and groundbased remote sensing methods during the Puerto Rico Dust Experiment (PRIDE), J. Geophys. Res., 108, 8586, doi:10.1029/2002JD002493.
- Schmid, B., et al. (2003), Column closure studies of lower tropospheric aerosol and water vapor during ACE-Asia using airborne Sun photometer and airborne in situ and ship-based lidar measurements, J. Geophys. Res., 108, 8656, doi:10.1029/2002JD003361.
- Wang, J., et al. (2003), GOES 8 retrieval of dust aerosol optical thickness over the Atlantic Ocean during PRIDE, J. Geophys. Res., 108, 8595, doi:10.1029/2002JD002494.
- Reid, J. S., et al. (2002), Dust vertical distribution in the Caribbean during the Puerto Rico Dust Experiment, Geophys. Res. Lett., 29, 1151, doi:10.1029/2001GL014092.
- Russell, P. B., et al. (2002), Comparison of aerosol single scattering albedos derived by diverse techniques in two North Atlantic experiments, J. Atmos. Sci., 59, 609-619.
- Wang, J., et al. (2002), Clear-column radiative closure during ACE-Asia: Comparison of multiwavelength extinction derived from particle size and composition with results from sunphotometry, J. Geophys. Res., 107, 4688, doi:10.1029/2002JD002465.
- Schmid, B., et al. (2001), Comparison of columnar water vapor measurements during the fall 1997 ARM Intensive Observation Period: solar transmittance methods, Appl. Opt., 40, 1886-1896.
- Collins, D. R., et al. (2000), In situ aerosol size distributions and clear column radiative closure during ACE-2, Tellus, 52, 498-525.
- Durkee, P. A., et al. (2000), Regional aerosol properties from satellite observations: ACE-1, TARFOX and ACE-2 results, Tellus, 52, 484-497.
- Ferrare, R., et al. (2000), Comparisons of aerosol optical properties and water vapor among ground and airborne lidars and sun photometers during TARFOX, J. Geophys. Res., 105, 9917-9933.
- Gassó, S., et al. (2000), Influence of humidity on the aerosol scattering coefficient and its effect on the upwelling radiance during ACE2, Tellus, 52, 546-567.
- Hartley, et al. (2000), Properties of aerosols aloft relevant to direct radiative forcing off the mid-Atlantic coast of the United States, J. Geophys. Res., 105, 9859-9885.
- Redemann, J., et al. (2000), Retrieving the vertical structure of the effective aerosol complex index of refraction from a combination of aerosol in situ and remote sensing measurements during TARFOX, J. Geophys. Res., 105, 9949-9970.
- Schmid, B., et al. (2000), Clear sky closure studies of lower tropospheric aerosol and water vapor during ACE 2 using airborne sunphotometer, airborne in-situ, space-borne, and ground-based measurements, Tellus, 52, 568-593.
- Welton, E. J., et al. (2000), Ground-based lidar measurements of aerosols during ACE-2: Lidar description, results, and comparisons with other ground-based and airborne measurements, Tellus, 52, 636-651.
- Russell, P. B., et al. (1999), Aerosol-induced radiative flux changes off the United States Mid-Atlantic coast: Comparison of values calculated from sunphotometer and in situ data with those measured by airborne pyranometer, J. Geophys. Res., 104, 2289-2307.
- Schmid, B., et al. (1999), Comparison of aerosol optical depth from four solar radiometers during the Fall 1997 ARM Intensive Observation Period, Geophys. Res. Lett., 26, 2725-2728.
- Tanré, D., et al. (1999), Retrieval of aerosol optical thickness and size distribution over ocean from the MODIS airborne simulator during TARFOX, J. Geophys. Res., 104, 2261-2278.
- Veefkind, J. P., et al. (1999), Aerosol optical depth retrieval using ATSR-2 and AVHRR data during TARFOX, J. Geophys. Res., 104, 2253-2260.
- Hegg, D. A., et al. (1997), Chemical Apportionment of Aerosol Column Optical Depth Off the Mid-Atlantic Coast of the United States, J. Geophys. Res., 102, 25,293-25,303.
- Schmid, B., et al. (1997), Three Dimensional Measurements of Lower Tropospheric Aerosol Optical Depth Spectra and Water Vapor Amounts During ACE-2 by Means of Airborne Sunphotometry, EOS Trans. Amer Geophys. Union, 78, F97.
- Russell, P. B., et al. (1996), Global to microscale evolution of the Pinatubo volcanic aerosol, derived from diverse measurements and analyses, J. Geophys. Res., 101, 18,745-18.
- Pueschel, R., et al. (1995), Condensed Water in Tropical Cyclone “Oliver”, 8 February 1993, Atmos. Res., 38, 297-313.
- Pueschel, R., et al. (1994), Physical and Optical Properties of the Pinatubo Volcanic Aerosol: Aircrafts with Impactors and a Suntracking Photometer, J. Geophys. Res., D99, 12,915-12.
- Pueschel, R., et al. (1994), Physical and Optical Properties of the Pinatubo Volcanic Aerosol: Aircrafts with Impactors and a Suntracking Photometer, J. Geophys. Res., D99, 12,915-12.
- Pueschel, R., et al. (1994), Aerosol Abundances and Optical Characteristics in the Pacific Basin Free Troposphere, Atmos. Envir., 28, 951-960.
- Russell, P. B., et al. (1993), Pinatubo and Pre-Pinatubo Optical Depth Spectra: Mauna Loa Measurements, Comparisons, Inferred Particle Size Distributions, Radiative Effects, and Relationship to Lidar Data, J. Geophys. Res., 98, 22,969-22.
- Russell, P. B., et al. (1993), Post-Pinatubo Optical Depth Spectra vs. Latitude, and Vortex Structure: Airborne Tracking Sunphotometer Measurements in AASE II, Geophys. Res. Lett., 20, 2571-2574.
- Toon, B., et al. (1993), Heterogeneous Reaction Probabilities, Solubilities, and the Physical State of Cold Volcanic Aerosols, Science, 261, 1136-1140.
- Pueschel, R., et al. (1990), Calibration Correction of an Active Scattering Spectrometer Probe to Account for Refractive Index of Stratospheric Aerosols, Aerosol Sci. Tech., 12, 992-1002.
- Pueschel, R., and J. M. Livingston (1990), Aerosol Spectral Optical Depths: Jet Fuel and Forest Fire Smokes, J. Geophys. Res., 95, 22,417-22.
- Spanner, M. A., et al. (1990), Determination of Atmospheric Optical Properties During the First ISLSCP Field Experiment (FIFE), AIAA Journal of Spacecraft and Rockets, 27.4, 373-379.
- Pueschel, R., et al. (1989), Condensed Nitrate Sulfate and Chloride in Antarctic Stratospheric Aerosols, J. Geophys. Res., 94, 11,271-11.