Charles Gatebe
Organization:
NASA Ames Research Center
Email:
Business Phone:
Work:
(650) 604-5533
Mobile:
(650) 315-0365
Business Address:
Atmospheric Science Branch (SGG)
Mail 245-5
Moffett Field, CA 940035
United StatesWebsite:
First Author Publications:
- Gatebe, C., et al. (2021), A new measurement approach for validating satellite-based above-cloud aerosol optical depth, Atmos. Meas. Tech., 14, 1405-1423, doi:10.5194/amt-14-1405-2021.
- Gatebe, C., and M. D. King (2016), Airborne spectral BRDF of various surface types (ocean, vegetation, snow, desert, wetlands, cloud decks, smoke layers) for remote sensing applications, Remote Sensing of Environment, 179, 131-148, doi:10.1016/j.rse.2016.03.029.
- Gatebe, C., et al. (2014), Surface albedo darkening from wildfires in northern sub-Saharan Africa, Environ. Res. Lett., 9, 065003, doi:10.1088/1748-9326/9/6/065003.
- Gatebe, C., et al. (2012), Taking the pulse of pyrocumulus clouds, Atmos. Environ., 52, 121-130, doi:10.1016/j.atmosenv.2012.01.045.
- Gatebe, C., R. Levy, and A. M. Thompson (2012), Atmospheric Chemistry over Southern Africa Changing Chemistry in a Changing Climate: Human and Natural Impacts over the Southern Africa Region (C4-SAR), Eos Trans. AGU, 93, 110, doi:10.1029/2012EO100008.
- Gatebe, C., et al. (2011), Effects of ship wakes on ocean brightness and radiative forcing over ocean, Geophys. Res. Lett., 38, L17702, doi:10.1029/2011GL048819.
- Gatebe, C., et al. (2010), Simultaneous retrieval of aerosol and surface optical properties from combined airborne- and ground-based direct and diffuse radiometric measurements, Atmos. Chem. Phys., 10, 1-18, doi:10.5194/acp-10-1-2010.
- Gatebe, C., et al. (2007), Characterization of errors in the use of integrating-sphere systems in the calibration of scanning radiometers, Appl. Opt., 46, 7640-7651.
- Gatebe, C., et al. (2005), Airborne Spectral Measurements of Ocean Directional Reflectance, J. Atmos. Sci., 62, 1072-1092.
- Gatebe, C., et al. (2003), Airborne spectral measurements of surface–atmosphere anisotropy for several surfaces and ecosystems over southern Africa, J. Geophys. Res., 108, 8489, doi:10.1029/2002JD002397.
- Gatebe, C., et al. (2001), Sensitivity of off-nadir zenith angles to correlation between visible and near-infrared reflectance for use in remote sensing of aerosol over land, IEEE Trans. Geosci. Remote Sens., 39, 805-819.
Co-Authored Publications:
- Black, F. W., et al. (2021), Biomass Burning and Water Balance Dynamics in the Lake Chad Basin in Africa, Earth, 2, 340-356, doi:10.3390/earth2020020.
- Cawse-Nicholson, K., et al. (2021), NASA’s surface biology and geology designated observable: A perspective on surface imaging algorithms, J. Atmos. Sci., D, X, doi:10.1016/j.rse.2021.112349.
- Lanconelli, C., et al. (2020), In-Situ and Aircraft Reflectance Measurement Effectiveness for CAL/VAL Activities: A Study over Railroad Valley, doi:10.3390/rs12203366.
- Sproles, E. A., et al. (2020), Autonomous Aerial Vehicles (AAVs) as a Tool for Improving the Spatial Resolution of Snow Albedo Measurements in Mountainous Regions, doi:10.3390/hydrology7030041.
- Várnai, T., et al. (2019), Developing an Aircraft-Based Angular Distribution Model of Solar Reflection from Wildfire Smoke to Aid Satellite-Based Radiative Flux Estimation, doi:10.3390/rs11131509.
- Chen, N., et al. (2018), New neural network cloud mask algorithm based on radiative transfer T simulations, Remote Sensing of Environment, 219, 62-71, doi:10.1016/j.rse.2018.09.029.
- Melnikova, I., and C. Gatebe (2018), Vertical profile of cloud optical parameters derived from airborne, J. Quant. Spectrosc. Radiat. Transfer, 214, 39-60.
- Fan, Y., et al. (2017), Atmospheric correction over coastal waters using multilayer neural networks, Remote Sensing of Environment, 199, 218-240, doi:10.1016/j.rse.2017.07.016.
- Kharbouche, S., et al. (2017), Assessment of Satellite-Derived Surface Reflectances by NASA’s CAR Airborne Radiometer over Railroad Valley Playa, Remote Sensing, 9, 562, doi:10.3390/rs9060562.
- Nag, S., et al. (2017), Multispectral Snapshot Imagers Onboard Small Satellite Formations for Multi-Angular Remote Sensing, IEEE Sensors Journal, 17, 5252-5268, doi:10.1109/JSEN.2017.2717384.
- Salisbury, J., et al. (2017), Coastal Observations from a New Vantage Point, Eos, 97, doi:10.1029/2016EO062707.
- Fan, Y., et al. (2016), Neural network method to correct bidirectional effects in water-leaving radiance, Appl. Opt., 55, 1559, doi:10.1364/AO.55.000010.
- Gautam, R., et al. (2016), Radiative characteristics of clouds embedded in smoke derived from airborne multiangular measurements, J. Geophys. Res., 121, doi:10.1002/2016JD025309.
- Ichoku, C., et al. (2016), and the hydrological cycle in Northern sub-Saharan Africa, Environmental Research Letter, 11, 095005, doi:10.1088/1748-9326/11/9/09500.
- Ichoku, C., et al. (2016), Biomass burning, land-cover change, and the hydrological cycle in Northern sub-Saharan Africa, Environmental Research Letters, 11, 095005, doi:10.1088/1748-9326/11/9/095005.
- Jiao, Z., et al. (2016), A method for improving hotspot directional signatures in BRDF models used for MODIS, Remote Sensing of Environment, 186, 135-151, doi:10.1016/j.rse.2016.08.007.
- Lin, Z., et al. (2016), 1206 Vol. 55, No. 6 / February 20 2016 / Applied Optics Research Article Radiative transfer simulations of the two-dimensional ocean glint reflectance and determination of the sea surface roughness, Appl. Opt., 55, 2016.
- Nag, S., et al. (2016), Effect of satellite formations and imaging modes on global albedo estimation, Acta Astronautica, 126, 77-97, doi:10.1016/j.actaastro.2016.04.004.
- Nag, S., C. Gatebe, and T. Hilker (2016), Simulation of Multiangular Remote Sensing Products Using Small Satellite Formations, IEEE Journal Of Selected Topics In Applied Earth Observations And Remote Sensing, 1-16, doi:10.1109/JSTARS.2016.2570683.
- Singh, M. K., et al. (2016), PolarBRDF: A general purpose Python package for visualization and quantitative analysis of multi-angular remote sensing measurements, Computers & Geosciences, 96, 173-180, doi:10.1016/j.cageo.2016.08.015.
- Engelbrecht, F., et al. (2015), Projections of rapidly rising surface temperatures over Africa under, Environ. Res. Lett., 10, 085004, doi:10.1088/1748-9326/10/8/085004.
- Nag, S., C. Gatebe, and O. de Weck (2015), Observing system simulations for small satellite formations estimating bidirectional reflectance, International Journal of Applied Earth Observation and Geoinformation, 43, 102-118, doi:10.1016/j.jag.2015.04.022.
- Román, M. O., et al. (2011), Variability in surface BRDF at different spatial scales (30 m–500 m) over a mixed agricultural landscape as retrieved from airborne and satellite spectral measurements, Remote Sensing of Environment, 115, 2184-2203, doi:10.1016/j.rse.2011.04.012.
- Lyapustin, A., et al. (2010), Analysis of snow bidirectional reflectance from ARCTAS Spring-2008 Campaign, Atmos. Chem. Phys., 10, 4359-4375, doi:10.5194/acp-10-4359-2010.
- Abdou, W., et al. (2006), Sua Pan Surface Bidirectional Reflectance: A Case Study to Evaluate the Effect of Atmospheric Correction on the Surface Products of the Multi-angle Imaging SpectroRadiometer (MISR) During SAFARI 2000, IEEE Trans. Geosci. Remote Sens., 44, 1699-1706, doi:10.1109/TGRS.2006.876031.