David Whiteman
Organization:
NASA Goddard Space Flight Center
Email:
Business Phone:
Work:
(301) 614-6703
Business Address:
Greenbelt, MD 20771
United StatesFirst Author Publications:
- Whiteman, D., et al. (2018), Retrievals of aerosol microphysics from simulations of spaceborne multiwavelength lidar measurements, J. Quant. Spectrosc. Radiat. Transfer, 205, 27-39, doi:10.1016/j.jqsrt.2017.09.009.
- Whiteman, D., et al. (2013), Assessing the temperature dependence of narrow-band Raman water vapor lidar measurements: a practical approach, Appl. Opt., 52, 5376-5384.
- Whiteman, D., et al. (2012), Correction technique for Raman water vapor lidar signal-dependent bias and suitability for water vapor trend monitoring in the upper troposphere, Atmos. Meas. Tech., 5, 2893-2916, doi:10.5194/amt-5-2893-2012.
- Whiteman, D., et al. (2011), The relative importance of random error and observation frequency in detecting trends in upper tropospheric water vapor, J. Geophys. Res., 116, D21118, doi:10.1029/2011JD016610.
- Whiteman, D., et al. (2010), Airborne and Ground-Based Measurements Using a High-Performance Raman Lidar, J. Atmos. Oceanic Technol., 27, 1781-1801, doi:10.1175/2010JTECHA1391.1.
- Whiteman, D., et al. (2006), Raman Lidar Measurements during the International H2O Project. Part I: Instrumentation and Analysis Techniques, J. Atmos. Oceanic Technol., 23, 157-170.
- Whiteman, D., et al. (2006), Raman Lidar Measurements during the International H2O Project. Part II: Case Studies, J. Atmos. Oceanic Technol., 23, 170-183.
- Whiteman, D., et al. (2006), Analysis of Raman lidar and radiosonde measurements from the AWEX-G field campaign and its relation to Aqua validation, J. Geophys. Res., 111, D09S09, doi:10.1029/2005JD006429.
- Whiteman, D., B. Demoz, and Z. Wang (2004), Subtropical cirrus cloud extinction to backscatter ratios measured by Raman Lidar during CAMEX-3, Geophys. Res. Lett., 31, L12105, doi:10.1029/2004GL020003.
- Whiteman, D. (2003), Examination of the traditional Raman lidar technique. I. Evaluating the temperature-dependent lidar equations, Applied Optics, 42, 2571-2592.
- Whiteman, D. (2003), Examination of the traditional Raman lidar technique. II. Evaluating the ratios for water vapor and aerosols, Applied Optics, 42, 2593-2608.
- Whiteman, D., et al. (2001), Raman lidar measurements of water vapor and cirrus clouds during the passage of Hurricane Bonnie, J. Geophys. Res., 106, 5211-5225.
Co-Authored Publications:
- Pérez-Ramírez, D., et al. (2019), Retrievals of aerosol single scattering albedo by multiwavelength lidar T measurements: Evaluations with NASA Langley HSRL-2 during discover-AQ field campaigns ⁎, Remote Sensing of Environment, 222, 144-164, doi:10.1016/j.rse.2018.12.022.
- Veselovskii, I., et al. (2018), Characterization of smoke and dust episode over West Africa: comparison of MERRA-2 modeling with multiwavelength Mie–Raman lidar observations, Atmos. Meas. Tech., 11, 949-969, doi:10.5194/amt-11-949-2018.
- Veselovskii, I., et al. (2015), Characterization of forest fire smoke event near Washington, DC in summer 2013 with multi-wavelength lidar, Atmos. Chem. Phys., 15, 1647-1660, doi:10.5194/acp-15-1647-2015.
- Sakai, T., et al. (2013), Liquid Water Cloud Measurements Using the Raman Lidar Technique: Current Understanding and Future Research Needs, J. Atmos. Oceanic Technol., 30, 1337-1353, doi:10.1175/JTECH-D-12-00099.1.
- Stiller, G. P., et al. (2012), Validation of MIPAS IMK/IAA temperature, water vapor, and ozone profiles with MOHAVE-2009 campaign measurements, Atmos. Meas. Tech., 5, 289-320, doi:10.5194/amt-5-289-2012.
- Veselovskii, I., et al. (2012), Linear estimation of particle bulk parameters from multi-wavelength lidar measurements, Atmos. Meas. Tech., 5, 1135-1145, doi:10.5194/amt-5-1135-2012.
- Hurst, D., et al. (2011), Comparisons of temperature, pressure and humidity measurements by balloon-borne radiosondes and frost point hygrometers during MOHAVE-2009, Atmos. Meas. Tech., 4, 2777-2793, doi:10.5194/amt-4-2777-2011.
- Leblanc, T., et al. (2011), Measurements of Humidity in the Atmosphere and Validation Experiments (MOHAVE)-2009: overview of campaign operations and results, Atmos. Meas. Tech., 4, 2579-2605, doi:10.5194/amt-4-2579-2011.
- Venable, D. D., et al. (2011), Lamp mapping technique for independent determination of the water vapor mixing ratio calibration factor for a Raman lidar system, Appl. Opt., 50, 4622-4632.
- Veselovskii, I., et al. (2010), Application of randomly oriented spheroids for retrieval of dust particle parameters from multiwavelength lidar measurements, J. Geophys. Res., 115, D21203, doi:10.1029/2010JD014139.
- Veselovskii, I., et al. (2009), Demonstration of Aerosol Property Profiling by Multiwavelength Lidar under Varying Relative Humidity Conditions, J. Atmos. Oceanic Technol., 26, 1543-1557, doi:10.1175/2009JTECHA1254.1.
- Nardi, B., et al. (2008), Initial validation of ozone measurements from the High Resolution Dynamics Limb Sounder, J. Geophys. Res., 113, D16S36, doi:10.1029/2007JD008837.
- Demoz, B., et al. (2006), The Dryline on 22 May 2002 during IHOP_2002: Convective-Scale Measurements at the Profiling Site, Mon. Wea. Rev., 134, 294-310.
- Veselovskii, I., et al. (2006), Information content of data measured with a multiple-field-of-view lidar, Appl. Opt., 45, 6839-6848.
- Demoz, B. B., et al. (2005), The Cold Front of 15 April 1994 over the Central United States. Part I: Observations, Mon. Wea. Rev., 133, 1525-1543.
- Veselovskii, I., et al. (2005), Information content of multiwavelength lidar data with respect to microphysical particle properties derived from eigenvalue analysis, Appl. Opt., 44, 5292-5303.
- Veselovskii, I., et al. (2004), Inversion of multiwavelength Raman lidar data for retrieval of bimodal aerosol size distribution, Applied Optics, 43, 1180-1195.
- Revercomb, H., et al. (2003), The Atmospheric Radiation Measurement (ARM) Program’s water vapor intensive observation periods: Overview, accomplishments, and future challenges. Bull. Amer. Meteor. Soc., 84, 217-236.
- Griaznov, V., et al. (2002), Angle- and size-dependent characteristics of incoherent Raman and fluorescent scattering by microspheres. 1. General expressions, Appl. Opt., 41, 5773-5782.
- Veselovskii, I., et al. (2002), Angle- and size-dependent characteristics of incoherent Raman and fluorescent scattering by microspheres. 2. Numerical simulation, Appl. Opt., 41, 5783-5791.
- Ferrare, R., et al. (2000), Comparisons of aerosol optical properties and water vapor among ground and airborne lidars and sun photometers during TARFOX, J. Geophys. Res., 105, 9917-9933.