Dale Hurst
Organization:
NOAA Earth System Research Laboratory
University of Colorado, Boulder
First Author Publications:
- Hurst, D., et al. (2016), Recent divergences in stratospheric water vapor measurements by frost point hygrometers and the Aura Microwave Limb Sounder, Atmos. Meas. Tech., 9, 4447-4457, doi:10.5194/amt-9-4447-2016.
- Hurst, D., et al. (2014), Validation of Aura Microwave Limb Sounder stratospheric water vapor measurements by the NOAA frost point hygrometer, J. Geophys. Res., 119, 1612-1625, doi:10.1002/2013JD020757.
- Hurst, D., et al. (2011), Comparisons of temperature, pressure and humidity measurements by balloon-borne radiosondes and frost point hygrometers during MOHAVE-2009, Atmos. Meas. Tech., 4, 2777-2793, doi:10.5194/amt-4-2777-2011.
- Hurst, D., et al. (2011), Stratospheric water vapor trends over Boulder, Colorado: Analysis of the 30 year Boulder record, J. Geophys. Res., 116, D02306, doi:10.1029/2010JD015065.
- Hurst, D., et al. (2002), The construction of a unified, high-resolution nitrous oxide data set for ER-2 flights during SOLVE, J. Geophys. Res., 107, 8271, doi:10.1029/2001JD000417.
- Hurst, D., et al. (2000), Comparison of in situ N2O and CH4 measurements in the upper troposphere and lower stratosphere during STRAT and POLARIS, J. Geophys. Res., 105, 19811-19822.
Co-Authored Publications:
- Krysztofiak, G., et al. (2023), N2O Temporal Variability from the Middle Troposphere to the Middle Stratosphere Based on Airborne and Balloon-Borne Observations during the Period 1987–2018, Atmosphere, 14, 585, doi:10.3390/atmos14030585.
- Konopka, P., et al. (2022), Stratospheric Moistening After 2000, Geophys. Res. Lett., 49, e2021GL097609, doi:10.1029/2021GL097609.
- Ma, D., et al. (2022), Mixing characteristics within the tropopause transition layer over the Asian summer monsoon region based on ozone and water vapor sounding data, Atmos. Res., 271, 106093, doi:10.1016/j.atmosres.2022.106093.
- Read, W. G., et al. (2022), The SPARC Water Vapor Assessment II: assessment of satellite measurements of upper tropospheric humidity, Atmos. Meas. Tech., 15, 3377-3400, doi:10.5194/amt-15-3377-2022.
- Hintsa, E., et al. (2021), UAS Chromatograph for Atmospheric Trace Species (UCATS) – a versatile instrument for trace gas measurements on airborne platforms, Atmos. Meas. Tech., 14, 6795-6819, doi:10.5194/amt-14-6795-2021.
- Livesey, N., et al. (2021), Investigation and amelioration of long-term instrumental drifts in water vapor and nitrous oxide measurements from the Aura Microwave Limb Sounder (MLS) and their implications for studies of variability and trends, Atmos. Chem. Phys., 21, 15409-15430, doi:10.5194/acp-21-15409-2021.
- Ades, M., et al. (2020), State Of The Climate In 2019 - Global Climate: R. J. H. Dunn, D. M. Stanitski, N. Gobron, and K. M. Willett, Eds. Special Online Supplement to the Bulletin of the American Meteorological Society, Vol.101, No. 8, August, 2020, Bull. Am. Meteorol. Soc., doi:10.1175/BAMS-D-20-0104.1.
- Dirksen, R. J., et al. (2020), Managing the transition from Vaisala RS92 to RS41 radiosondes within the Global Climate Observing System Reference Upper-Air Network (GRUAN): a progress report, Geosci. Instrum. Method Data Syst., 9, 337-355, doi:10.5194/gi-9-337-2020.
- Jensen, E., et al. (2020), Assessment of Observational Evidence for Direct Convective Hydration of the Lower Stratosphere, J. Geophys. Res., 125, e2020JD032793, doi:10.1029/2020JD032793.
- Philipona, R., et al. (2020), Balloon-borne radiation measurements demonstrate radiative forcing by water vapor and clouds, B Meteorol. Z. (Contrib. Atm. Sci., 29, 501-509, doi:10.1127/metz/2020/1044.
- Wang, R., et al. (2020), Validation of SAGE III/ISS Solar Occultation Ozone Products With Correlative Satellite and Ground‐Based Measurements, J. Geophys. Res., 125, doi:10.1029/2020JD032430.
- Lossow, S., et al. (2019), The SPARC water vapour assessment II: profile-to-profile comparisons of stratospheric and lower mesospheric water vapour data sets obtained from satellites, Atmos. Meas. Tech., 12, 2693-2732, doi:10.5194/amt-12-2693-2019.
- Ortega, I., et al. (2019), Tropospheric water vapor profiles obtained with FTIR: comparison with balloon-borne frost point hygrometers and influence on trace gas retrievals, Atmos. Meas. Tech., 12, 873-890, doi:10.5194/amt-12-873-2019.
- Davis, S., et al. (2016), The Stratospheric Water and Ozone Satellite Homogenized (SWOOSH) database: a long-term database for climate studies, Earth Syst. Sci. Data, 8, 461-490, doi:10.5194/essd-8-461-2016.
- Hall, E., et al. (2016), Advancements, measurement uncertainties, and recent comparisons of the NOAA frost point hygrometer, Atmos. Meas. Tech., 9, 4295-4310, doi:10.5194/amt-9-4295-2016.
- Kräuchi, A., et al. (2016), Controlled weather balloon ascents and descents for atmospheric research and climate monitoring, Atmos. Meas. Tech., 9, 929-938, doi:10.5194/amt-9-929-2016.
- Müller, R., et al. (2016), The need for accurate long-term measurements of water vapor in the upper troposphere and lower stratosphere with global coverage, Earth's Future, 4, doi:10.1002/2015EF000321.
- Weigel, K., et al. (2016), UTLS water vapour from SCIAMACHY limb measurementsV3.01 (2002–2012), Atmos. Meas. Tech., 9, 133-158, doi:10.5194/amt-9-133-2016.
- Hegglin, M. I., et al. (2014), Vertical structure of stratospheric water vapour trends derived from merged satellite data, Nature Geoscience, 1-9, doi:10.1038/NGEO2236.
- Rollins, A., et al. (2014), Evaluation of UT/LS hygrometer accuracy by intercomparison during the NASA MACPEX mission, J. Geophys. Res., 119, doi:10.1002/2013JD020817.
- Fueglistaler, S., et al. (2013), The relation between atmospheric humidity and temperature trends for stratospheric water, J. Geophys. Res., 118, 1052-1074, doi:10.1002/jgrd.50157.
- Kunz, A., et al. (2013), Extending water vapor trend observations over Boulder into the tropopause region: Trend uncertainties and resulting radiative forcing, J. Geophys. Res., 118, 11269-11284, doi:10.1002/jgrd.50831.
- Nedoluha, G., et al. (2013), Validation of long-term measurements of water vapor from the midstratosphere to the mesosphere at two Network for the Detection of Atmospheric Composition Change sites, J. Geophys. Res., 118, 934-942, doi:10.1029/2012JD018900.
- Waugh, D., et al. (2013), Tropospheric SF6: Age of air from the Northern Hemisphere midlatitude surface, J. Geophys. Res., 118, 11429-11441, doi:10.1002/jgrd.50848.
- Stiller, G. P., et al. (2012), Validation of MIPAS IMK/IAA temperature, water vapor, and ozone profiles with MOHAVE-2009 campaign measurements, Atmos. Meas. Tech., 5, 289-320, doi:10.5194/amt-5-289-2012.
- Whiteman, D., et al. (2012), Correction technique for Raman water vapor lidar signal-dependent bias and suitability for water vapor trend monitoring in the upper troposphere, Atmos. Meas. Tech., 5, 2893-2916, doi:10.5194/amt-5-2893-2012.
- Leblanc, T., et al. (2011), Measurements of Humidity in the Atmosphere and Validation Experiments (MOHAVE)-2009: overview of campaign operations and results, Atmos. Meas. Tech., 4, 2579-2605, doi:10.5194/amt-4-2579-2011.
- Wofsy, S. C., et al. (2011), HIAPER Pole-to-Pole Observations (HIPPO): Fine-grained, global scale measurements of climatically important atmospheric gases and aerosols, Philosophical Transactions of the Royal Society of London A, 369, 2073-2086, doi:10.1098/rsta.2010.0313.
- Wunch, D., et al. (2010), Calibration of the Total Carbon Column Observing Network using aircraft profile data, Atmos. Meas. Tech., 3, 1351-1362, doi:10.5194/amt-3-1351-2010.
- Engel, A., et al. (2009), Age of stratospheric air unchanged within uncertainties over the past 30 years, Nat. Geosci., 2, 28, doi:10.1038/NGEO388.
- Moore, F., et al. (2006), PANTHER Data from SOLVE-II Through CR-AVE: A Contrast Between Long and Short Lived Compounds, American Geophysical Union, Fall Meeting 2006, abstract #A41A-0025.
- Drdla, K., et al. (2003), Evidence for the widespread presence of liquid-phase particles during the 1999–2000 Arctic winter, J. Geophys. Res., 108, 8318, doi:10.1029/2001JD001127.
- Herman, R. L., et al. (2003), Hydration, dehydration, and the total hydrogen budget of the 1999/2000 winter Arctic stratosphere, J. Geophys. Res., 108, 8320, doi:10.1029/2001JD001257.
- Greenblatt, J. B., et al. (2002), Tracer-based determination of vortex descent in the 1999-2000 Arctic winter, J. Geophys. Res., 107, 8279, doi:10.1029/2001JD000937.
- Greenblatt, J. B., et al. (2002), Defining the polar vortex edge from an N2O potential temperature correlation, J. Geophys. Res., 107, 8268, doi:10.1029/2001JD000575.
- Jost, H., et al. (2002), Mixing events revealed by anomalous tracer relationships in the Arctic vortex during winter 1999/2000, J. Geophys, Res., 107, 4795, doi:10.1029/2002JD002380.
- Salawitch, R., et al. (2002), Chemical loss of ozone during the Arctic winter of 1999/2000: An analysis based on balloon-borne observations, J. Geophys. Res., 107, doi:10.1029/2001JD000620.
- Andrews, A. E., et al. (2001), Mean ages of stratospheric air derived from in situ observations of CO2, CH4, and N2O, J. Geophys. Res., 106, 32.
- Gao, R., et al. (2001), Observational evidence for the role of denitrification in Arctic stratospheric ozone loss, Geophys. Res. Lett., 28, 2879-2882.
- Popp, P., et al. (2001), Severe and extensive denitrification in the 1999-2000 Arctic Winter Stratosphere, Geophys. Res. Lett., 28, 2875-2878.