Organization
NASA Goddard Space Flight Center
Email
Business Phone
Work
(301) 614-5994
Mobile
(301) 655-5767
Business Address
Code 614
Greenbelt, MD 20771
United States
First Author Publications
-
Duncan, B., et al. (2020), DUNCAN ET AL. 1 of 94, The Cryosphere, Loboda12, Montesano1.
-
Duncan, B., et al. (2016), A space-based, high-resolution view of notable changes in urban NOx pollution around the world (2005–2014), J. Geophys. Res., 121, doi:10.1002/2015JD024121.
-
Duncan, B., et al. (2014), Satellite data of atmospheric pollution for U.S. air quality applications: Examples of applications, summary of data end-user resources, answers to FAQs, and common mistakes to avoid, Atmos. Environ., 94, 647-662, doi:10.1016/j.atmosenv.2014.05.061.
-
Duncan, B., et al. (2010), Application of OMI observations to a space-based indicator of NOx and VOC controls on surface ozone formation, Atmos. Environ., 44, 2213-2223, doi:10.1016/j.atmosenv.2010.03.010.
-
Duncan, B., et al. (2009), Temperature dependence of factors controlling isoprene emissions, Geophys. Res. Lett., 36, L05813, doi:10.1029/2008GL037090.
-
Duncan, B., et al. (2008), The influence of European pollution on ozone in the Near East and northern Africa, Atmos. Chem. Phys., 8, 2267-2283, doi:10.5194/acp-8-2267-2008.
-
Duncan, B., and J.A. Logan (2008), Model analysis of the factors regulating the trends and variability of carbon monoxide between 1988 and 1997, Atmos. Chem. Phys., 8, 7389-7403, doi:10.5194/acp-8-7389-2008.
-
Duncan, B., et al. (2007), Model study of the cross-tropopause transport of biomass burning pollution, Atmos. Chem. Phys., 7, 3713-3736, doi:10.5194/acp-7-3713-2007.
-
Duncan, B., et al. (2007), Global budget of CO, 1988–1997: Source estimates and validation with a global model, J. Geophys. Res., 112, D22301, doi:10.1029/2007JD008459.
-
Duncan, B., et al. (2003), Indonesian wildfires of 1997: Impact on tropospheric chemistry, J. Geophys. Res., 108, 4458, doi:10.1029/2002JD003195.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.
Co-Authored Publications
-
Anderson, D., et al. (2023), Constraining the hydroxyl (OH) radical in the tropics with satellite observations of its drivers – first steps toward assessing the feasibility of a global observation strategy, Atmos. Chem. Phys., doi:10.5194/acp-23-6319-2023.
-
Anderson, D., et al. (2021), Spatial and temporal variability in the hydroxyl (OH) radical: understanding the role of large-scale climate features and their influence on OH through its dynamical and photochemical drivers, Atmos. Chem. Phys., 21, 6481-6508, doi:10.5194/acp-21-6481-2021.
-
Keller, C.A., et al. (2021), Description of the NASA GEOS Composition Forecast Modeling System GEOS-CF v1.0, J. Adv. Modeling Earth Syst..
-
Ackerman, S.A., et al. (2020), Satellites See the World’s Atmosphere, Ackerman Et Al., 4, 4.1, doi:10.1175/AMSMONOGRAPHS-D-18-0009.1.
-
Liu, F., et al. (2020), A methodology to constrain carbon dioxide emissions from coal-fired power plants using satellite observations of co-emitted nitrogen dioxide, Atmos. Chem. Phys., 20, 99-116, doi:10.5194/acp-20-99-2020.
-
Nicely, J., et al. (2020), A machine learning examination of hydroxyl radical differences among model simulations for CCMI-1, Atmos. Chem. Phys., 20, 1341-1361, doi:10.5194/acp-20-1341-2020.
-
Strode, S., et al. (2020), Strong sensitivity of the isotopic composition of methane to the plausible range of tropospheric chlorine, Atmos. Chem. Phys., 20, 8405-8419, doi:10.5194/acp-20-8405-2020.
-
Goldberg, D.L., et al. (2019), Exploiting OMI NO2 satellite observations to infer fossil-fuel CO2 emissions from U.S. megacities☆, Science of the Total Environment, 695, 133805, doi:10.1016/j.scitotenv.2019.133805.
-
Palmer, P.I., et al. (2019), Potential improvements in global carbon flux estimates from a network of laser heterodyne radiometer measurements of column carbon dioxide, Atmos. Meas. Tech., 12, 2579-2594, doi:10.5194/amt-12-2579-2019.
-
Uz, S.S., et al. (2019), ORIGINAL PAPER Earth Observations and Integrative Models in Support of Food and Water Security, Remote Sensing in Earth Systems Sciences, 2, 18-38, doi:10.1007/s41976-019-0008-6.
-
Anenberg, S., et al. (2018), Estimates of the Global Burden of Ambient PM2:5 , Ozone, and NO2 on Asthma Incidence and Emergency Room Visits, Research A Section 508-conformant HTML version of this article, doi:10.1289/EHP3766.
-
Fiore, A.M., et al. (2018), Peroxy acetyl nitrate (PAN) measurements at northern midlatitude mountain sites in April: a constraint on continental source–receptor relationships, Atmos. Chem. Phys., 18, 15345-15361, doi:10.5194/acp-18-15345-2018.
-
Choi, H., et al. (2017), Global O3–CO correlations in a chemistry and transport model during July–August: evaluation with TES satellite observations and sensitivity to input meteorological data and emissions, Atmos. Chem. Phys., 17, 8429-8452, doi:10.5194/acp-17-8429-2017.
-
Krotkov, N., et al. (2016), Aura OMI observations of regional SO2 and NO2 pollution changes from 2005 to 2015, Atmos. Chem. Phys., 16, 4605-4629, doi:10.5194/acp-16-4605-2016.
-
Ott, L., et al. (2016), Frequency and impact of summertime stratospheric intrusions over Maryland during DISCOVER-AQ (2011): New evidence from NASA’s GEOS-5 simulations, J. Geophys. Res., 121, 3687-3706, doi:10.1002/2015JD024052.
-
Arnold, S.R., et al. (2015), Biomass burning influence on high-latitude tropospheric ozone and reactive nitrogen in summer, Atmos. Chem. Phys., 15, 6047-6068, doi:10.5194/acp-15-6047-2015.
-
Emmons, L., et al. (2015), The POLARCAT Model Intercomparison Project (POLMIP): overview and evaluation with observations, Atmos. Chem. Phys., 15, 6721-6744, doi:10.5194/acp-15-6721-2015.
-
Lamsal, L.N., et al. (2015), U.S. NO2 trends (2005e2013): EPA Air Quality System (AQS) data versus improved observations from the Ozone Monitoring Instrument (OMI), Atmos. Environ., 110, 130-143, doi:10.1016/j.atmosenv.2015.03.055.
-
Monks, S.A., et al. (2015), Multi-model study of chemical and physical controls on transport of anthropogenic and biomass burning pollution to the Arctic, Atmos. Chem. Phys., 15, 3575-3603, doi:10.5194/acp-15-3575-2015.
-
Choi, S., et al. (2014), First estimates of global free-tropospheric NO2 abundances derived using a cloud-slicing technique applied to satellite observations from the Aura Ozone Monitoring Instrument (OMI), Atmos. Chem. Phys., 14, 10565-10588, doi:10.5194/acp-14-10565-2014.
-
de Foy, B., et al. (2014), Model evaluation of methods for estimating surface emissions and chemical lifetimes from satellite data, Atmos. Environ., 98, 66-77, doi:10.1016/j.atmosenv.2014.08.051.
-
Warner, J., et al. (2014), Global carbon monoxide products from combined AIRS, TES and MLS measurements on A-train satellites, Atmos. Chem. Phys., 14, 103-114, doi:10.5194/acp-14-103-2014.
-
Zhu, L., et al. (2014), Anthropogenic emissions of highly reactive volatile organic compounds in eastern Texas inferred from oversampling of satellite (OMI) measurements of HCHO columns, Environ. Res. Lett., 9, 114004, doi:10.1088/1748-9326/9/11/114004.
-
Ziemke, J.R., et al. (2014), Assessment and applications of NASA ozone data products derived from Aura OMI/MLS satellite measurements in context of the GMI chemical transport model, J. Geophys. Res., 119, 5671-5699, doi:10.1002/2013JD020914.
-
Streets, D., et al. (2013), Emissions estimation from satellite retrievals: A review of current capability, Atmos. Environ., 77, 1011-1042, doi:10.1016/j.atmosenv.2013.05.051.
-
Fry, M.M., et al. (2012), The influence of ozone precursor emissions from four world regions on tropospheric composition and radiative climate forcing, J. Geophys. Res., 117, D07306, doi:10.1029/2011JD017134.
-
Wild, O., et al. (2012), Modelling future changes in surface ozone: a parameterized approach, Atmos. Chem. Phys., 12, 2037-2054, doi:10.5194/acp-12-2037-2012.
-
Goodrich, J.P., et al. (2011), High‐frequency measurements of methane ebullition over a growing season at a temperate peatland site, Geophys. Res. Lett., 38, L07404, doi:10.1029/2011GL046915.
-
Liang, Q., et al. (2011), Reactive nitrogen, ozone and ozone production in the Arctic troposphere and the impact of stratosphere-troposphere exchange, Atmos. Chem. Phys., 11, 13181-13199, doi:10.5194/acp-11-13181-2011.
-
Witte, J.C., et al. (2011), NASA A-Train and Terra observations of the 2010 Russian wildfires, Atmos. Chem. Phys., 11, 9287-9301, doi:10.5194/acp-11-9287-2011.
-
Witte, J.C., et al. (2011), The unique OMI HCHO/NO2 feature during the 2008 Beijing Olympics: Implications for ozone production sensitivity, Atmos. Environ., 45, 3103-3111, doi:10.1016/j.atmosenv.2011.03.015.
-
Allen, D., et al. (2010), Impact of lightning NO emissions on North American photochemistry as determined using the Global Modeling Initiative (GMI) model, J. Geophys. Res., 115, D22301, doi:10.1029/2010JD014062.
-
Jonson, J.E., et al. (2010), A multi-model analysis of vertical ozone profiles, Atmos. Chem. Phys., 10, 5759-5783, doi:10.5194/acp-10-5759-2010.
-
Ott, L., et al. (2010), Influence of the 2006 Indonesian biomass burning aerosols on tropical dynamics studied with the GEOS‐5 AGCM, J. Geophys. Res., 115, D14121, doi:10.1029/2009JD013181.
-
Yoshida, Y., et al. (2010), The impact of the 2005 Gulf hurricanes on pollution emissions as inferred from Ozone Monitoring Instrument (OMI) nitrogen dioxide, Atmos. Environ., 44, 1443-1448, doi:10.1016/j.atmosenv.2010.01.037.
-
Anenberg, S.C., et al. (2009), Intercontinental Impacts of Ozone Pollution on Human Mortality, Environ. Sci. Technol., 43, 6482-6487.
-
Chandra, S., et al. (2009), Effects of the 2006 El Nino on tropospheric ozone and carbon monoxide: implications for dynamics and biomass burning, Atmos. Chem. Phys., 9, 4239-4249, doi:10.5194/acp-9-4239-2009.
-
Fiore, A.M., et al. (2009), Multimodel estimates of intercontinental source-receptor relationships for ozone pollution, J. Geophys. Res., 114, D04301, doi:10.1029/2008JD010816.
-
Langmann, B., et al. (2009), Vegetation fire emissions and their impact on air pollution and climate, Atmos. Environ., 43, 107-116, doi:10.1016/j.atmosenv.2008.09.047.
-
Liang, Q., et al. (2009), The governing processes and timescales of stratosphere-to-troposphere transport and its contribution to ozone in the Arctic troposphere, Atmos. Chem. Phys., 9, 3011-3025, doi:10.5194/acp-9-3011-2009.
-
Liu, H., et al. (2009), Sensitivity of photolysis frequencies and key tropospheric oxidants in a global model to cloud vertical distributions and optical properties, J. Geophys. Res., 114, D10305, doi:10.1029/2008JD011503.
-
Reidmiller, D.R., et al. (2009), The influence of foreign vs. North American emissions on surface ozone in the US, Atmos. Chem. Phys., 9, 5027-5042, doi:10.5194/acp-9-5027-2009.
-
Wu, S., et al. (2009), Chemical nonlinearities in relating intercontinental ozone pollution to anthropogenic emissions, Geophys. Res. Lett., 36, L05806, doi:10.1029/2008GL036607.
-
Ziemke, J.R., et al. (2009), Recent biomass burning in the tropics and related changes in tropospheric ozone, Geophys. Res. Lett., 36, L15819, doi:10.1029/2009GL039303.
-
Sanderson, M.G., et al. (2008), A multi-model study of the hemispheric transport and deposition of oxidised nitrogen, Geophys. Res. Lett., 35, L17815, doi:10.1029/2008GL035389.
-
Shindell, D., et al. (2008), A multi-model assessment of pollution transport to the Arctic, Atmos. Chem. Phys., 8, 5353-5372, doi:10.5194/acp-8-5353-2008.
-
Bian, H., et al. (2007), Sensitivity of global CO simulations to uncertainties in biomass burning sources, J. Geophys. Res., 112, D23308, doi:10.1029/2006JD008376.
-
Schoeberl, M.R., et al. (2007), A trajectory-based estimate of the tropospheric ozone column using the residual method, J. Geophys. Res., 112, D24S49, doi:10.1029/2007JD008773.
-
Strahan, S., et al. (2007), Observationally derived transport diagnostics for the lowermost stratosphere and their application to the GMI chemistry and transport model, Atmos. Chem. Phys., 7, 2435-2445, doi:10.5194/acp-7-2435-2007.
-
Schoeberl, M.R., et al. (2006), The carbon monoxide tape recorder, Geophys. Res. Lett., 33, L12811, doi:10.1029/2006GL026178.
-
Ziemke, J.R., et al. (2006), Tropospheric ozone determined from Aura OMI and MLS: Evaluation of measurements and comparison with the Global Modeling Initiative’s Chemical Transport Model, J. Geophys. Res., 111, D19303, doi:10.1029/2006JD007089.
-
Liu, H., et al. (2003), Transport pathways for Asian pollution outflow over the Pacific: Interannual and seasonal variations, J. Geophys. Res., 108, 8786, doi:10.1029/2002JD003102.
-
Chin, M., et al. (2002), Tropospheric Aerosol Optical Thickness from the GOCART Model and Comparisons with Satellite and Sun Photometer Measurements, J. Atmos. Sci., 59, 461-483.
-
Liu, H., et al. (2002), Sources of tropospheric ozone along the Asian Pacific Rim: An analysis of ozonesonde observations, J. Geophys. Res., 107, 4573, doi:10.1029/2001JD002005.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.