Susan Strahan
Organization:
Universities Space Research Association
Email:
Business Phone:
Work:
(301) 614-5995
Business Address:
Goddard Earth Science and Technology Center
NASA Goddard Space Flight Center
Code 614
Greenbelt, MD 20771
United StatesFirst Author Publications:
- Strahan, S., et al. (2015), Modulation of Antarctic vortex composition by the quasi-biennial oscillation, Geophys. Res. Lett., 42, doi:10.1002/2015GL063759.
- Strahan, S., et al. (2014), Inorganic chlorine variability in the Antarctic vortex and implications for ozone recovery, J. Geophys. Res., 119, 14,098-14,109, doi:10.1002/2014JD022295.
- Strahan, S., A. Douglass, and P. Newman (2013), The contributions of chemistry and transport to low arctic ozone in March 2011 derived from Aura MLS observations, J. Geophys. Res., 118, 1563-1576, doi:10.1002/jgrd.50181.
- Strahan, S., et al. (2011), Using transport diagnostics to understand chemistry climate model ozone simulations, J. Geophys. Res., 116, D17302, doi:10.1029/2010JD015360.
- Strahan, S., M. R. Schoeberl, and S. D. Steenrod (2009), The impact of tropical recirculation on polar composition, Atmos. Chem. Phys., 9, 2471-2480, doi:10.5194/acp-9-2471-2009.
- Strahan, S., B. Duncan, and P. Hoor (2007), Observationally derived transport diagnostics for the lowermost stratosphere and their application to the GMI chemistry and transport model, Atmos. Chem. Phys., 7, 2435-2445, doi:10.5194/acp-7-2435-2007.
- Strahan, S., and B. C. Polansky (2006), Meteorological implementation issues in chemistry and transport models, Atmos. Chem. Phys., 6, 2895-2910, doi:10.5194/acp-6-2895-2006.
- Strahan, S., and A. Douglass (2004), Evaluating the credibility of transport processes in simulations of ozone recovery using the Global Modeling Initiative three-dimensional model, J. Geophys. Res., 109, D05110, doi:10.1029/2003JD004238.
- Strahan, S. (2002), Influence of planetary wave transport on Arctic ozone as observed by Polar Ozone and Aerosol Measurement (POAM) III, J. Geophys. Res., 107, 4417, doi:10.1029/2002JD002189.
- Strahan, S. (1999), Climatologies of lowerstratospheric NOyand 03 and correlations with N20 based on in situ observations, J. Geophys. Res., 104, 30463.
- Strahan, S., M. Loewenstein, and J. Podolske (1999), Climatologyand small-scalestructureof lower stratosphericNzO based on in situ observations, J. Geophys. Res., 104, 2195-2208.
- Strahan, S., J. E. Nielsen, and M. C. Cerniglia (1996), Long-lived tracer transport in the Antarctic stratosphere, J. Geophys. Res., 101, 26615.
- Strahan, S., and J. D. Mahlman (1994), Evaluation of the SKYHI generalcirculationmodel usingaircraft measurements 1. Polar winter stratosphericmeteorologyand tracer morphology, J. Geophys. Res., 99, 10305.
- Strahan, S., et al. (1994), Evolution of the 1991-1992 Arctic Vortex and Comparison with the Geophysical Fluid-Dynamics Laboratory Skyhi General-Circulation Model, J. Geophys. Res., 99, 20,713-20.
- Strahan, S., and J. D. Mahlman (1994), Evaluation of the SKYHI general circulation model usingaircraft N2O measurements 2. Tracer variability and diabatic meridional circulation S.E. $trahan 1 Atmospheric and OceanicSciences Program,Princeton University,Princeton,New Jersey, J. Geophys. Res., 99, 10319-10332.
- Strahan, S., et al. (1989), Correlation of N2O and Ozone in the Southern Polar Vortex During the Airborne Antarctic Ozone Experiment, J. Geophys. Res., 94, 16,749-16.
Co-Authored Publications:
- Orbe, C., et al. (2021), Tropospheric Age-of-Air: Influence of SF6 Emissions on Recent Surface Trends and Model Biases, J. Geophys. Res., 126, e2021JD035451, doi:10.1029/2021JD035451.
- Ruiz, D., et al. (2021), How Atmospheric Chemistry and Transport Drive Surface Variability of N2O and CFC-11, J. Geophys. Res., 126, org/10.1029/2020JD033979.
- Thompson, C., et al. (2021), The NASA Atmospheric Tomography (ATom) Mission: Imaging the Chemistry of the Global Atmosphere, Bull. Am. Meteorol. Soc., doi:10.1175/BAMS-D-20-0315.1.
- Nicely, J., et al. (2020), A machine learning examination of hydroxyl radical differences among model simulations for CCMI-1, Atmos. Chem. Phys., 20, 1341-1361, doi:10.5194/acp-20-1341-2020.
- Wang, R., et al. (2020), Validation of SAGE III/ISS Solar Occultation Ozone Products With Correlative Satellite and Ground‐Based Measurements, J. Geophys. Res., 125, doi:10.1029/2020JD032430.
- Smale, D., et al. (2019), Evolution of observed ozone, trace gases, and meteorological variables over Arrival Heights, Antarctica (77.8°S, 166.7°E) during the, Tellus, 2021, 1933783, doi:10.1080/16000889.2021.1933783.
- Yang, H., et al. (2019), Large-scale transport into the Arctic: the roles of the midlatitude jet and the Hadley Cell, Atmos. Chem. Phys., 19, 5511-5528, doi:10.5194/acp-19-5511-2019.
- De Mazière, M., et al. (2018), The Network for the Detection of Atmospheric Composition Change (NDACC): history, status and perspectives, Atmos. Chem. Phys., 18, 4935-4964, doi:10.5194/acp-18-4935-2018.
- Orbe, C., et al. (2018), Large-scale tropospheric transport in the Chemistry–Climate Model Initiative (CCMI) simulations, Atmos. Chem. Phys., 18, 7217-7235, doi:10.5194/acp-18-7217-2018.
- Choi, H., et al. (2017), Global O3–CO correlations in a chemistry and transport model during July–August: evaluation with TES satellite observations and sensitivity to input meteorological data and emissions, Atmos. Chem. Phys., 17, 8429-8452, doi:10.5194/acp-17-8429-2017.
- Tweedy, O. V., et al. (2017), Response of trace gases to the disrupted 2015-2016 quasi-biennial oscillation, Atmos. Chem. Phys., 17, 6813-6823, doi:10.5194/acp-17-6813-2017.
- Liu, H., et al. (2016), Using beryllium-7 to assess cross-tropopause transport in global models, Atmos. Chem. Phys., 16, 4641-4659, doi:10.5194/acp-16-4641-2016.
- Prather, M., et al. (2015), Measuring and modeling the lifetime of nitrous oxide including its variability, J. Geophys. Res., 120, 5693-5705, doi:10.1002/2015JD023267.
- Wargan, K., et al. (2015), The global structure of upper troposphere-lower stratosphere ozone in GEOS-5: A multiyear assimilation of EOS Aura data, J. Geophys. Res., 120, 2013-2036, doi:10.1002/2014JD022493.
- Chipperfield, M., et al. (2014), Multimodel estimates of atmospheric lifetimes of long-lived ozone-depleting substances: Present and future, J. Geophys. Res., 119, 2555-2573, doi:10.1002/2013JD021097.
- Douglass, A., et al. (2014), Understanding differences in chemistry climate model projections of stratospheric ozone, J. Geophys. Res., 119, 4922-4939, doi:10.1002/2013JD021159.
- Ziemke, J. R., et al. (2014), Assessment and applications of NASA ozone data products derived from Aura OMI/MLS satellite measurements in context of the GMI chemical transport model, J. Geophys. Res., 119, 5671-5699, doi:10.1002/2013JD020914.
- Allen, D. R., A. Douglass, and S. Strahan (2013), The large-scale frozen-in anticyclone in the 2011 Arctic summer stratosphere, J. Geophys. Res., 118, 2656-2672, doi:10.1002/jgrd.50256.
- Waugh, D., et al. (2013), Tropospheric SF6: Age of air from the Northern Hemisphere midlatitude surface, J. Geophys. Res., 118, 11429-11441, doi:10.1002/jgrd.50848.
- Douglass, A., et al. (2012), Understanding differences in upper stratospheric ozone response to changes in chlorine and temperature as computed using CCMVal-2 models, J. Geophys. Res., 117, D16306, doi:10.1029/2012JD017483.
- Li, F., et al. (2012), Long-term changes in stratospheric age spectra in the 21st century in the Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM), J. Geophys. Res., 117, D20119, doi:10.1029/2012JD017905.
- Li, F., et al. (2012), Seasonal variations of stratospheric age spectra in the Goddard Earth Observing System Chemistry Climate Model (GEOSCCM), J. Geophys. Res., 117, D05134, doi:10.1029/2011JD016877.
- Neu, J., et al. (2012), Transport, Chapter, 5.
- Allen, D. R., et al. (2011), Modeling the Frozen-In Anticyclone in the 2005 Arctic Summer Stratosphere, Atmos. Chem. Phys., 11, 4557-4576, doi:10.5194/acp-11-4557-2011.
- Bian, H., et al. (2009), Sensitivity of aerosol optical thickness and aerosol direct radiative effect to relative humidity, Atmos. Chem. Phys., 9, 2375-2386, doi:10.5194/acp-9-2375-2009.
- Prather, M., et al. (2008), Quantifying errors in trace species transport modeling, Proc. Natl. Acad. Sci., 105, 19617-19621, doi:10.1073/pnas.0806541106.
- Schoeberl, M. R., et al. (2008), Comparison of lower stratospheric tropical mean vertical velocities, J. Geophys. Res., 113, D24109, doi:10.1029/2008JD010221.
- Duncan, B., et al. (2007), Model study of the cross-tropopause transport of biomass burning pollution, Atmos. Chem. Phys., 7, 3713-3736, doi:10.5194/acp-7-3713-2007.
- Eyring, V., et al. (2007), Multi-model simulations of the impact of international shipping on Atmospheric Chemistry and Climate in 2000 and 2030, Atmos. Chem. Phys., 7, 757-780, doi:10.5194/acp-7-757-2007.
- Liu, X., et al. (2007), Uncertainties in global aerosol simulations: Assessment using three meteorological data sets, J. Geophys. Res., 112, D11212, doi:10.1029/2006JD008216.
- Schoeberl, M. R., et al. (2007), A trajectory-based estimate of the tropospheric ozone column using the residual method, J. Geophys. Res., 112, D24S49, doi:10.1029/2007JD008773.
- Waugh, D., S. Strahan, and P. Newman (2007), Sensitivity of stratospheric inorganic chlorine to differences in transport, Atmos. Chem. Phys., 7, 4935-4941, doi:10.5194/acp-7-4935-2007.
- Dentener, F., et al. (2006), Nitrogen and sulfur deposition on regional and global scales: A multimodel evaluation, Global Biogeochem. Cycles, 20, GB4003, doi:10.1029/2005GB002672.
- Dentener, F., et al. (2006), The Global Atmospheric Environment for the Next Generation, Environ. Sci. Technol., 40, 3586-3594, doi:10.1021/es0523845.
- Douglass, A., et al. (2006), Sensitivity of Arctic ozone loss to polar stratospheric cloud volume and chlorine and bromine loading in a chemistry and transport model, Geophys. Res. Lett., 33, L17809, doi:10.1029/2006GL026492.
- Shindell, D., et al. (2006), Multimodel simulations of carbon monoxide: Comparison with observations and projected near-future changes, J. Geophys. Res., 111, D19306, doi:10.1029/2006JD007100.
- Stevenson, D. S., et al. (2006), Multimodel ensemble simulations of present-day and near-future tropospheric ozone, J. Geophys. Res., 111, D08301, doi:10.1029/2005JD006338.
- van Noije, T. P. C., et al. (2006), Multi-model ensemble simulations of tropospheric NO2 compared with GOME retrievals for the year 2000, Atmos. Chem. Phys., 6, 2943-2979, doi:10.5194/acp-6-2943-2006.
- Considine, D., et al. (2004), Sensitivity of Global Modeling Initiative model predictions of Antarctic ozone recovery to input meteorological fields, J. Geophys. Res., 109, D15301, doi:10.1029/2003JD004487.
- Douglass, A., et al. (2004), Radicals and reservoirs in the GMI chemistry and transport model: Comparison to measurements, J. Geophys. Res., 109, D16302, doi:10.1029/2004JD004632.
- Andrews, A. E., et al. (2001), Mean ages of stratospheric air derived from in situ observations of CO2, CH4, and N2O, J. Geophys. Res., 106, 32.
- Andrews, A. E., et al. (2001), Empirical age spectra for the midlatitude lower stratosphere from in situ observations of CO2: quantitative evidence for a subtropical "barrier" to horizontal transport, J. Geophys. Res., 106, 10257-10274.
- Loewenstein, M., et al. (1993), New Observations of the NOy/N2O Correlation in the Lower Stratosphere, Geophys. Res. Lett., 20, 2531-2534, doi:10.1029/93GL03004.
- Podolske, J., et al. (1993), Northern Hemisphere Nitrous Oxide Morphology During the 1989 AASE and the 1991-1992 AASE II Campaigns, Geophys. Res. Lett., 20, 2535-2538.
- Salawitch, R., et al. (1993), Chemical Loss of Ozone in the Arctic Polar Vortex in the Winter of 1991-1992, Science, 261, 1146-1149.
- Weaver, A., et al. (1993), Effects of Pinatubo Aerosol on Stratospheric Ozone at Mid-Latitudes, Geophys. Res. Lett., 20, 2515-2518.
- Bacmeister, J., et al. (1992), An Estimate of the Relative Magnitude of Small-Scale Tracer Fluxes, Geophys. Res. Lett., 19, 1101-1104.
- Tuck, A. F., et al. (1992), Polar Stratospheric Cloud Processed Air and Potential Vorticity in the Northern Hemisphere Lower Stratosphere at Mid-Latitudes During Winter, J. Geophys. Res., 97, 7883-7904.
- Douglass, A., et al. (1990), Global Three-Dimensional Constituent Fields Derived From Profile Data, Geophys. Res. Lett., 17, 525-528.
- Fahey, D., et al. (1990), A Diagnostic for Denitrification in the Winter Polar Stratosphere, Nature, 345, 698-702.
- Kelley, K. K., et al. (1990), A Comparison of ER-2 Measurements of Stratospheric Water Vapor Between the 1987 Antarctic and 1989 Arctic Airborne Missions, Geophys. Res. Lett., 17, 465-468.
- Lait, L. R., et al. (1990), Reconstruction of O3 and N2O fields from ER-2, DC-8, and Balloon Observations, Geophys. Res. Lett., 17, 521-524.
- Loewenstein, M., et al. (1990), N2O as a Dynamical Tracer in the Arctic Vortex, Geophys. Res. Lett., 17, 477-480.
- Loewenstein, M., J. Podolske, and S. Strahan (1990), ATLAS Instrument Characterization: Accuracy of the AASE and AAOE Nitrous Oxide Data Sets, Geophys. Res. Lett., 17, 481-484.
- Salawitch, R., et al. (1990), Loss of Ozone in the Polar Vortex for the Winter of 1989, Geophys. Res. Lett., 17, 561-164.
- Schoeberl, M. R., et al. (1990), Stratospheric Constituent Trends from ER-2 Profile Data, Geophys. Res. Lett., 17, 469-472.
- Hartmann, et al. (1989), Potential Vorticity Estimates in the South Polar Vortex from ER-2 Data, J. Geophys. Res., 94, 11,625-11.
- Hartmann, D. L., et al. (1989), Transport into the South Polar Vortex in Early Spring, J. Geophys. Res., 94, 16,779-16.
- Loewenstein, M., et al. (1989), Evidence for Diabatic Cooling and Poleward Transport Within and Around the 1987 Antarctic Ozone Hole, J. Geophys. Res., 94, 16,797-16.
- Loewenstein, M., et al. (1989), Nitrous Oxide as a Dynamical Tracer in the 1987 Airborne Antarctic Ozone Experiment, J. Geophys. Res., 94, 11,589-11.
- Murphy, D. M., et al. (1989), Indicators of Transport and Vertical Motion from Corrections between In Situ Measurements of the Airborne Antarctic Ozone Experiment, J. Geophys. Res., 94, 11,669-11.
- Podolske, J., et al. (1989), Stratospheric Nitrous Oxide Distribution in the Southern Hemisphere, J. Geophys. Res., 94, 16,767-16.
- Schoeberl, M. R., et al. (1989), Reconstruction of the Constituent Distribution and Trends in the Antarctic Polar Vortex from the ER-2 Flight Observation, J. Geophys. Res., 94, 16,815-16.