Nickolay Krotkov
Organization:
NASA Goddard Space Flight Center
Email:
Business Phone:
Work:
(301) 614-5553
Business Address:
Goddard Space Flight Center
8800 Greenbelt Rd
Greenbelt, MD 20771
United StatesWebsite:
First Author Publications:
- Krotkov, N., et al. (2022), Day–Night Monitoring of Volcanic SO2 and Ash Clouds for Aviation Avoidance at Northern Polar Latitudes, jkirkendall@esri.com * Correspondence, Nickolay.a.krotkov@n, 4003, doi:10.3390/rs13194003.
- Krotkov, N., et al. (2017), The version 3 OMI NO2 standard product, Atmos. Meas. Tech., 10, 3133-3149, doi:10.5194/amt-10-3133-2017.
- Krotkov, N., et al. (2016), Aura OMI observations of regional SO2 and NO2 pollution changes from 2005 to 2015, Atmos. Chem. Phys., 16, 4605-4629, doi:10.5194/acp-16-4605-2016.
- Krotkov, N., et al. (2010), Dispersion and lifetime of the SO2 cloud from the August 2008 Kasatochi eruption, J. Geophys. Res., 115, D00L20, doi:10.1029/2010JD013984.
- Krotkov, N., et al. (2008), Validation of SO2 retrievals from the Ozone Monitoring Instrument over NE China, J. Geophys. Res., 113, D16S40, doi:10.1029/2007JD008818.
- Krotkov, N., et al. (2006), Band Residual Difference Algorithm for Retrieval of SO2 From the Aura Ozone Monitoring Instrument (OMI), IEEE Trans. Geosci. Remote Sens., 44, 1259-1266, doi:10.1109/TGRS.2005.861932.
Co-Authored Publications:
- Bisson, K., et al. (2024), Observing ocean ecosystem responses to volcanic ash, Remote Sensing of Environment, 296.
- Bucsela, E. J., et al. (2024), This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. Midlatitude Lightning NOx Production Efficiency Infer, J. Geophys. Res., 124, 13,475-13,497, doi:10.1029/2019JD030561.
- Fisher, B., et al. (2024), Revised estimates of NO2 reductions during the COVID-19 lockdowns using updated TROPOMI NO2 retrievals and model simulations, Atmos. Environ., 326, 120459, doi:10.1016/j.atmosenv.2024.120459.
- Bisson, K., et al. (2023), Observing ocean ecosystem responses to volcanic ash, Remote Sensing of Environment, 296, 113749, doi:10.1016/j.rse.2023.113749.
- Fioletov, V. E., et al. (2023), Version 2 of the global catalogue of large anthropogenic and volcanic SO2 sources and emissions derived from satellite measurements, Earth Syst. Sci. Data, 15, 75-93, doi:10.5194/essd-15-75-2023.
- Fioletov, V. E., et al. (2023), Estimation of anthropogenic and volcanic SO2 emissions from satellite data in the presence of snow/ice on the ground, Atmos. Meas. Tech., 16, 5575-5592, doi:10.5194/amt-16-5575-2023.
- Carn, S. A., et al. (2022), Out of the blue: Volcanic SO2 emissions during the 2021-2022 eruptions of Hunga Tonga—Hunga Ha’apai (Tonga), Front. Earth Sci., 10, doi:10.3389/feart.2022.976962.
- Li, C., et al. (2022), A new machine-learning-based analysis for improving satellite-retrieved atmospheric composition data: OMI SO2 as an example, Atmos. Meas. Tech., 15, 5497-5514, doi:10.5194/amt-15-5497-2022.
- Choi, S., et al. (2020), Assessment of NO2 observations during DISCOVER-AQ and KORUS-AQ field campaigns, Atmos. Meas. Tech., 13, 2523-2546, doi:10.5194/amt-13-2523-2020.
- Chong, H., et al. (2020), High-resolution mapping of SO2 using airborne observations from the T GeoTASO instrument during the KORUS-AQ field study: PCA-based vertical column retrievals ⁎, Remote Sensing of Environment, 241, 111725, doi:10.1016/j.rse.2020.111725.
- Fioletov, V., et al. (2020), Anthropogenic and volcanic point source SO2 emissions derived from TROPOMI on board Sentinel-5 Precursor: first results, Atmos. Chem. Phys., 20, 5591-5607, doi:10.5194/acp-20-5591-2020.
- Kharol, S. K., et al. (2020), Ceramic industry at Morbi as a large source of SO2 emissions in India, Atmos. Environ., 223, 117243, doi:10.1016/j.atmosenv.2019.117243.
- Liu, F., et al. (2020), A methodology to constrain carbon dioxide emissions from coal-fired power plants using satellite observations of co-emitted nitrogen dioxide, Atmos. Chem. Phys., 20, 99-116, doi:10.5194/acp-20-99-2020.
- Torres, O., et al. (2020), Stratospheric Injection of Massive Smoke Plume From Canadian Boreal Fires in 2017 as Seen by DSCOVR‐EPIC, CALIOP, and OMPS‐LP Observations, J. Geophys. Res., 125, e2020JD032579, doi:10.1029/2020JD032579.
- Abad, G. G., et al. (2019), Five decades observing Earth’s atmospheric trace gases using ultraviolet and visible backscatter solar radiation from space, J. Quant. Spectrosc. Radiat. Transfer, in press, doi:10.1016/j.jqsrt.2019.04.030 (submitted).
- Abad, G. G., et al. (2019), Five decades observing Earth’s atmospheric trace gases using ultraviolet and visible backscatter solar radiation from space, J. Quant. Spectrosc. Radiat. Transfer, doi:10.1016/j.jqsrt.2019.04.030.
- Adams, C., et al. (2019), Satellite-derived emissions of carbon monoxide, ammonia, and nitrogen dioxide from the 2016 Horse River wildfire in the Fort McMurray area, Atmos. Chem. Phys., 19, 2577-2599, doi:10.5194/acp-19-2577-2019.
- Allen, D., et al. (2019), Lightning NOx Production in the Tropics as Determined Using OMI NO2 Retrieval and WWLLN Stroke Data, J. Geophys. Res., 124, 13,498-13,518, doi:10.1029/2018JD029824.
- Fedkin, N. M., et al. (2019), Linking improvements in sulfur dioxide emissions to decreasing sulfate wet T deposition by combining satellite and surface observations with trajectory analysis, Atmos. Environ., 199, 210-223, doi:10.1016/j.atmosenv.2018.11.039.
- Goldberg, D. L., et al. (2019), Exploiting OMI NO2 satellite observations to infer fossil-fuel CO2 emissions from U.S. megacities☆, Science of the Total Environment, 695, 133805, doi:10.1016/j.scitotenv.2019.133805.
- Griffin, D., et al. (2019), High-Resolution Mapping of Nitrogen Dioxide With TROPOMI: First Results and Validation Over the Canadian Oil Sands, Geophys. Res. Lett., 46, doi:10.1029/2018GL081095.
- He, H., et al. (2019), Chemical climatology of atmospheric pollutants in the eastern United States: T Seasonal/diurnal cycles and contrast under clear/cloudy conditions for remote sensing, Atmos. Environ., 206, 85-107, doi:10.1016/j.atmosenv.2019.03.003.
- Zhang, H., et al. (2019), Surface erythemal UV irradiance in the continental United States derived from ground-based and OMI observations: quality assessment, trend analysis and sampling issues, Atmos. Chem. Phys., 19, 2165-2181, doi:10.5194/acp-19-2165-2019.
- Carn, S. A., et al. (2018), First Observations of Volcanic Eruption Clouds From the L1 Earth-Sun Lagrange Point by DSCOVR/EPIC, Geophys. Res. Lett., 45, doi:10.1029/2018GL079808.
- Ialongo, I., et al. (2018), Application of satellite-based sulfur dioxide observations to support the cleantech sector: Detecting emission reduction from copper smelters ∗, Environmental Technology & Innovation, 12, 172-179, doi:10.1016/j.eti.2018.08.006.
- Lindfors, A. V., et al. (2018), The TROPOMI surface UV algorithm, Atmos. Meas. Tech., 11, 997-1008, doi:10.5194/amt-11-997-2018.
- Liu, F., et al. (2018), A new global anthropogenic SO2 emission inventory for the last decade: a mosaic of satellite-derived and bottom-up emissions, Atmos. Chem. Phys., 18, 16571-16586, doi:10.5194/acp-18-16571-2018.
- Marshak, A., et al. (2018), Earth Observations From Dscovr Epic Instrument, Bull. Am. Meteorol. Soc., 1829-1850, doi:10.1175/BAMS-D-17-0223.1.
- Vasilkov, A. P., et al. (2018), A cloud algorithm based on the O2-O2 477 nm absorption band featuring an advanced spectral fitting method and the use of surface geometry-dependent Lambertian-equivalent reflectivity, Atmos. Meas. Tech., 11, 4093-4107, doi:10.5194/amt-11-4093-2018.
- Lamsal, L. N., et al. (2017), High-resolution NO2 observations from the Airborne Compact Atmospheric Mapper: Retrieval and validation, J. Geophys. Res., 122, 1953-1970, doi:10.1002/2016JD025483.
- Li, C., et al. (2017), India is overtaking China as the world’s largest emitter of anthropogenic sulfur dioxide, Scientific Reports, 7, 14304, doi:10.1038/s41598-017-14639-8.
- Li, C., et al. (2017), New-generation NASA Aura Ozone Monitoring Instrument (OMI) volcanic SO2 dataset: algorithm description, initial results, and continuation with the Suomi-NPP Ozone Mapping and Profiler Suite (OMPS), Atmos. Meas. Tech., 10, 445-458, doi:10.5194/amt-10-445-2017.
- Lorente, A., et al. (2017), Structural uncertainty in air mass factor calculation for NO2 and HCHO satellite retrievals, Atmos. Meas. Tech., 10, 759-782, doi:10.5194/amt-10-759-2017.
- Miles, G. M., et al. (2017), Retrieval of volcanic SO2 from HIRS/2 using optimal estimation, Atmos. Meas. Tech., 10, 2687-2702.
- Zhang, Y., et al. (2017), Continuation of long-term global SO2 pollution monitoring from OMI to OMPS, Atmos. Meas. Tech., 10, 1495-1509, doi:10.5194/amt-10-1495-2017.
- Zoogman, P., et al. (2017), Tropospheric emissions: Monitoring of pollution (TEMPO), J. Quant. Spectrosc. Radiat. Transfer, 186, 17-39, doi:10.1016/j.jqsrt.2016.05.008.
- Adams, C., et al. (2016), Limb–nadir matching using non-coincident NO2 observations: proof of concept and the OMI-minus-OSIRIS prototype product, Atmos. Meas. Tech., 9, 4103-4122, doi:10.5194/amt-9-4103-2016.
- Fioletov, V. E., et al. (2016), A global catalogue of large SO2 sources and emissions derived from the Ozone Monitoring Instrument, Atmos. Chem. Phys., 16, 11497-11519, doi:10.5194/acp-16-11497-2016.
- Ge, C., et al. (2016), Satellite-based global volcanic SO2 emissions and sulfate direct radiative forcing during 2005–2012, J. Geophys. Res., 121, 3446-3464, doi:10.1002/2015JD023134.
- He, H., et al. (2016), Response of SO2 and particulate air pollution to local and regional emission controls: A case study in Maryland, Earth’s Future, 4, 94-109, doi:10.1002/2015EF000330.
- Hughes, E. J., et al. (2016), Using CATS near-real-time lidar observations to monitor and constrain volcanic sulfur dioxide (SO2) forecasts, Geophys. Res. Lett., 43, 11,089-11,097, doi:10.1002/2016GL070119.
- Ialongo, I., et al. (2016), Comparison of OMI NO2 observations and their seasonal and weekly cycles with ground-based measurements in Helsinki, Atmos. Meas. Tech., 9, 5203-5212, doi:10.5194/amt-9-5203-2016.
- Li, C., et al. (2016), Satellite observation of pollutant emissions from gas flaring activities near the Arctic, Atmos. Environ., 133, 1-11, doi:10.1016/j.atmosenv.2016.03.019.
- McLinden, C. A., et al. (2016), A Decade of Change in NO2 and SO2 over the Canadian Oil Sands As Seen from Space, Environ. Sci. Technol., 50, 331-337, doi:10.1021/acs.est.5b04985.
- McLinden, C. A., et al. (2016), Space-based detection of missing sulfur dioxide sources of global air pollution, Nature Geoscience, 9, 496, doi:10.1038/NGEO2724.
- Mok, J., et al. (2016), Impacts of atmospheric brown carbon on surface UV and ozone in the Amazon Basin, Sci. Rep., 6, 36940, doi:10.1038/srep36940.
- Pickering, K., et al. (2016), Estimates of lightning NOx production based on OMI NO2 observations over the Gulf of Mexico, J. Geophys. Res., 121, 8668-8691, doi:10.1002/2015JD024179.
- Carn, S. A., et al. (2015), Extending the long-term record of volcanic SO2 emissions with the Ozone Mapping and Profiler Suite nadir mapper, Geophys. Res. Lett., 42, 925-932, doi:10.1002/2014GL062437.
- Ialongo, I., et al. (2015), Validation of satellite SO2 observations in northern Finland during the Icelandic Holuhraun fissure eruption, Atmos. Meas. Tech., 8, 599-621, doi:10.5194/amtd-8-599-2015.
- Lamsal, L. N., et al. (2015), U.S. NO2 trends (2005e2013): EPA Air Quality System (AQS) data versus improved observations from the Ozone Monitoring Instrument (OMI), Atmos. Environ., 110, 130-143, doi:10.1016/j.atmosenv.2015.03.055.
- Li, C., et al. (2015), A new method for global retrievals of HCHO total columns from the Suomi National Polar-orbiting Partnership Ozone Mapping and Profiler Suite, Geophys. Res. Lett., 42, 2515-2522, doi:10.1002/2015GL063204.
- Marchenko, S. V., et al. (2015), Revising the slant column density retrieval of nitrogen dioxide observed by the Ozone Monitoring Instrument, J. Geophys. Res., 120, 5670-5692, doi:10.1002/2014JD022913.
- Choi, S., et al. (2014), First estimates of global free-tropospheric NO2 abundances derived using a cloud-slicing technique applied to satellite observations from the Aura Ozone Monitoring Instrument (OMI), Atmos. Chem. Phys., 14, 10565-10588, doi:10.5194/acp-14-10565-2014.
- Duncan, B., et al. (2014), Satellite data of atmospheric pollution for U.S. air quality applications: Examples of applications, summary of data end-user resources, answers to FAQs, and common mistakes to avoid, Atmos. Environ., 94, 647-662, doi:10.1016/j.atmosenv.2014.05.061.
- Lamsal, L. N., et al. (2014), Evaluation of OMI operational standard NO2 column retrievals using in situ and surface-based NO2 observations, Atmos. Chem. Phys., 14, 11587-11609, doi:10.5194/acp-14-11587-2014.
- Carn, S. A., et al. (2013), Measuring global volcanic degassing with the Ozone Monitoring Instrument (OMI), From: Pyle, D. M., Mather, T. A. & Biggs, J. (eds) Remote Sensing of Volcanoes and Volcanic Processes: Integrating Observation and Modelling. Geological Society, London, Special Publications, 380, doi:10.1144/SP380.12.
- Fioletov, V. E., et al. (2013), Application of OMI, SCIAMACHY, and GOME-2 satellite SO2 retrievals for detection of large emission sources, J. Geophys. Res., 118, 11399-11418, doi:10.1002/jgrd.50826.
- Li, C., et al. (2013), A fast and sensitive new satellite SO2 retrieval algorithm based on principal component analysis: Application to the ozone monitoring instrument, Geophys. Res. Lett., 40, doi:10.1002/2013GL058134.
- Lu, Z., et al. (2013), Ozone Monitoring Instrument Observations of Interannual Increases in SO2 Emissions from Indian Coal-Fired Power Plants during 2005− 2012, Environ. Sci. Technol., 47, 13993-14000, doi:10.1021/es4039648.
- Streets, D., et al. (2013), Emissions estimation from satellite retrievals: A review of current capability, Atmos. Environ., 77, 1011-1042, doi:10.1016/j.atmosenv.2013.05.051.
- Wang, J., et al. (2013), Modeling of 2008 Kasatochi volcanic sulfate direct radiative forcing: assimilation of OMI SO2 plume height data and comparison with MODIS and CALIOP observations, Atmos. Chem. Phys., 13, 1895-1912, doi:10.5194/acp-13-1895-2013.
- McLinden, C. A., et al. (2012), Air quality over the Canadian oil sands: A first assessment using satellite observations, Geophys. Res. Lett., 39, L04804, doi:10.1029/2011GL050273.
- Carn, S. A., et al. (2011), In situ measurements of tropospheric volcanic plumes in Ecuador and Colombia during TC4, J. Geophys. Res., 116, D00J24, doi:10.1029/2010JD014718.
- Veefkind, J. P., et al. (2011), Global satellite analysis of the relation between aerosols and short-lived trace gases, Atmos. Chem. Phys., 11, 1255-1267, doi:10.5194/acp-11-1255-2011.
- Yang, K., et al. (2010), Direct retrieval of sulfur dioxide amount and altitude from spaceborne hyperspectral UV measurements: Theory and application, J. Geophys. Res., 115, D00L09, doi:10.1029/2010JD013982.
- Newman, P., et al. (2009), What would have happened to the ozone layer if chlorofluorocarbons (CFCs) had not been regulated?, Atmos. Chem. Phys., 9, 2113-2128, doi:10.5194/acp-9-2113-2009.
- Witte, J. C., et al. (2009), Satellite observations of changes in air quality during the 2008 Beijing Olympics and Paralympics, Geophys. Res. Lett., 36, L17803, doi:10.1029/2009GL039236.
- Yang, K., et al. (2009), Estimating the altitude of volcanic sulfur dioxide plumes from space borne hyper-spectral UV measurements, Geophys. Res. Lett., 36, L10803, doi:10.1029/2009GL038025.
- Yang, K., et al. (2009), Improving retrieval of volcanic sulfur dioxide from backscattered UV satellite observations, Geophys. Res. Lett., 36, L03102, doi:10.1029/2008GL036036.
- Yang, K., et al. (2007), Retrieval of large volcanic SO2 columns from the Aura Ozone Monitoring Instrument: Comparison and limitations, J. Geophys. Res., 112, D24S43, doi:10.1029/2007JD008825.