Arlene M. Fiore
Organization:
Columbia University
Email:
Business Phone:
Work:
(845) 365-8580
Business Address:
LDEO/Columbia University
61 Route 9W
Palisades, NY 10964
United StatesWebsite:
First Author Publications:
- Fiore, A. M., and L. J. Mickley (2024), Climate and Tropospheric Oxidizing Capacity, Annual Review of Earth and Planetary Sciences, 52, doi:10.1146/annurev-earth-032320-090307.
- Fiore, A. M., et al. (2024), Climate and Tropospheric Oxidizing Capacity, Annual Review of Earth and Planetary Sciences, 52, doi:10.1146/annurev-earth-032320-090307.
- Fiore, A. M., et al. (2018), Peroxy acetyl nitrate (PAN) measurements at northern midlatitude mountain sites in April: a constraint on continental source–receptor relationships, Atmos. Chem. Phys., 18, 15345-15361, doi:10.5194/acp-18-15345-2018.
- Fiore, A. M., et al. (2009), Multimodel estimates of intercontinental source-receptor relationships for ozone pollution, J. Geophys. Res., 114, D04301, doi:10.1029/2008JD010816.
Co-Authored Publications:
- Goldberg, D., et al. (2024), Evaluating the spatial patterns of U.S. urban NOx emissions using TROPOMI NO2, Remote Sensing of the Environment, 300, 113917, doi:10.1016/j.rse.2023.113917.
- Guo, H., et al. (2023), Heterogeneity and chemical reactivity of the remote troposphere defined by aircraft measurements – corrected, Atmos. Chem. Phys., 23, 99-117, doi:10.5194/acp-23-99-2023.
- Bourgeois, I., et al. (2022), Large contribution of biomass burning emissions to ozone throughout the global remote troposphere, Proc. Natl. Acad. Sci., doi:10.1073/pnas.2109628118.
- Murray, L., et al. (2022), Large uncertainties in global hydroxyl projections tied to fate of reactive nitrogen and carbon, Proc. Natl. Acad. Sci., doi:10.1073/pnas.2115204118.
- Naimark, J. G., et al. (2022), Evaluating Drought Responses of Surface Ozone Precursor Proxies: Variations With Land Cover Type, Precipitation, and Temperature, Geophys. Res. Lett..
- Anderson, D., et al. (2021), Spatial and temporal variability in the hydroxyl (OH) radical: understanding the role of large-scale climate features and their influence on OH through its dynamical and photochemical drivers, Atmos. Chem. Phys., 21, 6481-6508, doi:10.5194/acp-21-6481-2021.
- Anenberg, S., et al. (2021), This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. Using Satellites to Track Indicators of Global Air Po, Commentary, 10.1029/2020GH000270.
- Guo, H., et al. (2021), Heterogeneity and chemical reactivity of the remote troposphere defined by aircraft measurements, Atmos. Chem. Phys., 21, 13729-13746, doi:10.5194/acp-21-13729-2021.
- Thompson, C., et al. (2021), The NASA Atmospheric Tomography (ATom) Mission: Imaging the Chemistry of the Global Atmosphere, Bull. Am. Meteorol. Soc., doi:10.1175/BAMS-D-20-0315.1.
- Hall, S. R., et al. (2019), ATom: Global Modeled and CAFS Measured Cloudy and Clear Sky Photolysis Rates, 2016, Ornl Daac, doi:10.3334/ORNLDAAC/1651.
- Hall, S. R., et al. (2019), Atom: Global Modeled and CAFS Measured Cloudy and Clear Sky Photolysis Rates, 2016. ORNL DAAC, Oak Ridge, Tennessee, Ornl Daac, doi:10.3334/ORNLDAAC/1651.
- Hall, S. R., et al. (2018), Cloud impacts on photochemistry: building a climatology of photolysis rates from the Atmospheric Tomography mission, Atmos. Chem. Phys., 18, 16809-16828, doi:10.5194/acp-18-16809-2018.
- Li, J., et al. (2018), Decadal changes in summertime reactive oxidized nitrogen and surface ozone over the Southeast United States, Atmos. Chem. Phys., 18, 2341-2361, doi:10.5194/acp-18-2341-2018.
- Prather, M., et al. (2018), ATom: Simulated Data Stream for Modeling ATom-like Measurements, Ornl Daac, doi:10.3334/ORNLDAAC/1597.
- Prather, M., et al. (2018), How well can global chemistry models calculate the reactivity of short-lived greenhouse gases in the remote troposphere, knowing the chemical composition, Atmos. Meas. Tech., 11, 2653-2668, doi:10.5194/amt-11-2653-2018.
- Wofsy, S. C., et al. (2018), ATom: Merged Atmospheric Chemistry, Trace Gases, and Aerosols, Ornl Daac, doi:10.3334/ORNLDAAC/1581.
- Prather, M., et al. (2017), Global atmospheric chemistry – which air matters, Atmos. Chem. Phys., 17, 9081-9102, doi:10.5194/acp-17-9081-2017.
- Anenberg, et al. (2014), Impacts of intercontinental transport of anthropogenic fine particulate matter on human mortality, Air Qual. Atmo. Health, doi:10.1007/s11869-014-0248-9.
- Duncan, B., et al. (2014), Satellite data of atmospheric pollution for U.S. air quality applications: Examples of applications, summary of data end-user resources, answers to FAQs, and common mistakes to avoid, Atmos. Environ., 94, 647-662, doi:10.1016/j.atmosenv.2014.05.061.
- Zoogman, P., et al. (2014), Monitoring high-ozone events in the US Intermountain West using TEMPO geostationary satellite observations, Atmos. Chem. Phys., 14, 6261-6271, doi:10.5194/acp-14-6261-2014.
- Doherty, R. M., et al. (2013), Impacts of climate change on surface ozone and intercontinental ozone pollution: A multi-model study, J. Geophys. Res., 118, 3744-3763, doi:10.1002/jgrd.50266.
- Fry, M. M., et al. (2012), The influence of ozone precursor emissions from four world regions on tropospheric composition and radiative climate forcing, J. Geophys. Res., 117, D07306, doi:10.1029/2011JD017134.
- Lin, M., et al. (2012), Transport of Asian ozone pollution into surface air over the western United States in spring, J. Geophys. Res., 117, D00V07, doi:10.1029/2011JD016961.
- Wild, O., et al. (2012), Modelling future changes in surface ozone: a parameterized approach, Atmos. Chem. Phys., 12, 2037-2054, doi:10.5194/acp-12-2037-2012.
- Zoogman, P., et al. (2011), Ozone air quality measurement requirements for a geostationary satellite mission, Atmos. Environ., 45, 7143-7150, doi:10.1016/j.atmosenv.2011.05.058.
- Jonson, J. E., et al. (2010), A multi-model analysis of vertical ozone profiles, Atmos. Chem. Phys., 10, 5759-5783, doi:10.5194/acp-10-5759-2010.
- Naik, V., et al. (2010), Observational constraints on the global atmospheric budget of ethanol, Atmos. Chem. Phys., 10, 925-945.
- Anenberg, S. C., et al. (2009), Intercontinental Impacts of Ozone Pollution on Human Mortality, Environ. Sci. Technol., 43, 6482-6487.
- Reidmiller, D. R., et al. (2009), The influence of foreign vs. North American emissions on surface ozone in the US, Atmos. Chem. Phys., 9, 5027-5042, doi:10.5194/acp-9-5027-2009.
- Wu, S., et al. (2009), Chemical nonlinearities in relating intercontinental ozone pollution to anthropogenic emissions, Geophys. Res. Lett., 36, L05806, doi:10.1029/2008GL036607.
- Duncan, B., et al. (2008), The influence of European pollution on ozone in the Near East and northern Africa, Atmos. Chem. Phys., 8, 2267-2283, doi:10.5194/acp-8-2267-2008.
- Quinn, P., et al. (2008), Short-lived pollutants in the Arctic: their climate impact and possible mitigation strategies, Atmos. Chem. Phys., 8, 1723-1735, doi:10.5194/acp-8-1723-2008.
- Sanderson, M. G., et al. (2008), A multi-model study of the hemispheric transport and deposition of oxidised nitrogen, Geophys. Res. Lett., 35, L17815, doi:10.1029/2008GL035389.
- Shindell, D., et al. (2008), A multi-model assessment of pollution transport to the Arctic, Atmos. Chem. Phys., 8, 5353-5372, doi:10.5194/acp-8-5353-2008.
- Horowitz, L. W., et al. (2007), Observational constraints on the chemistry of isoprene nitrates over the eastern United States, J. Geophys. Res., 112, D12S08, doi:10.1029/2006JD007747.
- Dentener, F., et al. (2006), The Global Atmospheric Environment for the Next Generation, Environ. Sci. Technol., 40, 3586-3594, doi:10.1021/es0523845.
- Dentener, F., et al. (2006), Nitrogen and sulfur deposition on regional and global scales: A multimodel evaluation, Global Biogeochem. Cycles, 20, GB4003, doi:10.1029/2005GB002672.
- Shindell, D., et al. (2006), Multimodel simulations of carbon monoxide: Comparison with observations and projected near-future changes, J. Geophys. Res., 111, D19306, doi:10.1029/2006JD007100.
- Stevenson, D. S., et al. (2006), Multimodel ensemble simulations of present-day and near-future tropospheric ozone, J. Geophys. Res., 111, D08301, doi:10.1029/2005JD006338.
- van Noije, T. P. C., et al. (2006), Multi-model ensemble simulations of tropospheric NO2 compared with GOME retrievals for the year 2000, Atmos. Chem. Phys., 6, 2943-2979, doi:10.5194/acp-6-2943-2006.
- Liu, H., et al. (2004), Constraints on the sources of tropospheric ozone from 210Pb-7Be-O3 correlations, J. Geophys. Res., 109, D07306, doi:10.1029/2003JD003988.
- Heald, C. L., et al. (2003), Asian outflow and trans-Pacific transport of carbon monoxide and ozone pollution: An integrated satellite, aircraft, and model perspective, J. Geophys. Res., 108, 4804, doi:10.1029/2003JD003507.