Michael Prather
Organization:
University of California, Irvine
Email:
Business Address:
3329 Croul Hall, ESS Dept UC Irvine
Irvine, CA 92697-3100
United StatesFirst Author Publications:
- Prather, M., L. Froidevaux, and N. Livesey (2024), Observed changes in stratospheric circulation: decreasing lifetime of N2 O, 2005–2021, Atmos. Chem. Phys., doi:10.5194/acp-23-843-2023.
- Prather, M., and X. Zhu (2024), Lifetimes and timescales of tropospheric ozone, Lifetimes and timescales of tropospheric ozone. Elem, 12, 1, doi:10.1525/elementa.2023.00112.
- Prather, M. (2024), published by Wiley Periodicals LLC on behalf of American Geophysical Union. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original w, AGU Advances, 5, e2023AV001154, doi:10.1029/2023AV001154.
- Prather, M., H. Guo, and X. Zhu (2023), Deconstruction of tropospheric chemical reactivity using aircraft measurements: the Atmospheric Tomography Mission (ATom) data, Earth Syst. Sci. Data, 15, 3299-3349, doi:10.5194/essd-15-3299-2023.
- Prather, M., L. Froidevaux, and N. Livesey (2023), Observed changes in stratospheric circulation: Decreasing lifetime of N2O, 2005-2021, Atmos. Chem. Phys., doi:10.5194/acp-2022-650.
- Prather, M., H. Guo, and X. Zhu (2023), Deconstruction of tropospheric chemical reactivity using aircraft measurements: the Atmospheric Tomography Mission (ATom) data, Earth Syst. Sci. Data, 15, 1-51, doi:10.5194/essd-15-1-2023.
- Prather, M., and J. C. Hsu (2019), A round Earth for climate models, Proc. Natl. Acad. Sci., 116, 19330-19335, doi:10.1073/pnas.1908198116.
- Prather, M., et al. (2018), ATom: Simulated Data Stream for Modeling ATom-like Measurements, Ornl Daac, doi:10.3334/ORNLDAAC/1597.
- Prather, M., et al. (2018), How well can global chemistry models calculate the reactivity of short-lived greenhouse gases in the remote troposphere, knowing the chemical composition, Atmos. Meas. Tech., 11, 2653-2668, doi:10.5194/amt-11-2653-2018.
- Prather, M., et al. (2017), Global atmospheric chemistry – which air matters, Atmos. Chem. Phys., 17, 9081-9102, doi:10.5194/acp-17-9081-2017.
- Prather, M., et al. (2015), Measuring and modeling the lifetime of nitrous oxide including its variability, J. Geophys. Res., 120, 5693-5705, doi:10.1002/2015JD023267.
- Prather, M., and C. D. Holmes (2013), A perspective on time: loss frequencies, time scales and lifetimes, Environ. Chem., 10, 73-79.
- Prather, M., and C. D. HolmesA (2013), A perspective on time: loss frequencies, time scales and lifetimes, Environ. Chem., 10, 73-79.
- Prather, M., C. D. Holmes, and J. Hsu (2012), Reactive greenhouse gas scenarios: Systematic exploration of uncertainties and the role of atmospheric chemistry, Geophys. Res. Lett., 39, L09803, doi:10.1029/2012GL051440.
- Prather, M., et al. (2011), An atmospheric chemist in search of the tropopause, J. Geophys. Res., 116, D04306, doi:10.1029/2010JD014939.
- Prather, M., and J. Hsu (2010), Coupling of Nitrous Oxide and Methane by Global Atmospheric Chemistry, Science, 330, 952.
- Prather, M. (2009), Tropospheric O3 from photolysis of O2, Geophys. Res. Lett., 36, L03811, doi:10.1029/2008GL036851.
- Prather, M., et al. (2008), Quantifying errors in trace species transport modeling, Proc. Natl. Acad. Sci., 105, 19617-19621, doi:10.1073/pnas.0806541106.
- Prather, M., and J. Hsu (2008), NF3, the greenhouse gas missing from Kyoto, Geophys. Res. Lett., 35, L12810, doi:10.1029/2008GL034542.
Co-Authored Publications:
- Tian, H., et al. (2024), Global nitrous oxide budget (1980–2020), Earth Syst. Sci. Data, 16, 2543-2604, doi:10.5194/essd-16-2543-2024.
- Guo, H., et al. (2023), Heterogeneity and chemical reactivity of the remote troposphere defined by aircraft measurements – corrected, Atmos. Chem. Phys., 23, 99-117, doi:10.5194/acp-23-99-2023.
- Ruiz, D. J., and M. Prather (2023), From the middle stratosphere to the surface, using nitrous oxide to constrain the stratosphere–troposphere exchange of ozone, Atmos. Chem. Phys., doi:10.5194/acp-22-2079-2022.
- Guo, H., et al. (2021), Heterogeneity and chemical reactivity of the remote troposphere defined by aircraft measurements, Atmos. Chem. Phys., 21, 13729-13746, doi:10.5194/acp-21-13729-2021.
- Hsu, J., and M. Prather (2021), Assessing Uncertainties and Approximations in Solar Heating of the Climate System, J. Adv. Modeling Earth Syst., 13, e2020MS002131, doi:10.1029/2020MS002131.
- Ruiz, D., et al. (2021), How Atmospheric Chemistry and Transport Drive Surface Variability of N2O and CFC-11, J. Geophys. Res., 126, org/10.1029/2020JD033979.
- Tang, Q., et al. (2021), Evaluation of the interactive stratospheric ozone (O3v2) module in the E3SM version 1 Earth system model, Geosci. Model. Dev., 14, 1219-1236, doi:10.5194/gmd-14-1219-2021.
- Thompson, C., et al. (2021), The NASA Atmospheric Tomography (ATom) Mission: Imaging the Chemistry of the Global Atmosphere, Bull. Am. Meteorol. Soc., doi:10.1175/BAMS-D-20-0315.1.
- Nguyen, N. H., et al. (2020), Effects of Chemical Feedbacks on Decadal Methane Emissions Estimates, Geophys. Res. Lett., 47, 1-13, doi:10.1029/2019GL085706.
- Nicewonger, M. R., et al. (2020), All Rights Reserved. Reconstruction of Paleofire Emissions Over the Past Millennium From Measurements of Ice Core Acetylene, Geophys. Res. Lett., 47, 1-12, doi:10.1029/2019GL085101.
- Tian, H., et al. (2020), A comprehensive quantification of global nitrous oxide sources and sinks, Nature, 586, 248-256, doi:10.1038/s41586-020-2780-0.
- Hall, S. R., et al. (2019), ATom: Global Modeled and CAFS Measured Cloudy and Clear Sky Photolysis Rates, 2016, Ornl Daac, doi:10.3334/ORNLDAAC/1651.
- Hall, S. R., et al. (2019), Atom: Global Modeled and CAFS Measured Cloudy and Clear Sky Photolysis Rates, 2016. ORNL DAAC, Oak Ridge, Tennessee, Ornl Daac, doi:10.3334/ORNLDAAC/1651.
- Nicewonger, M. R., et al. (2019), Large changes in biomass burning over the last millennium inferred from paleoatmospheric ethane in polar ice cores, Proc. Natl. Acad. Sci., doi:10.
- Hall, S. R., et al. (2018), Cloud impacts on photochemistry: building a climatology of photolysis rates from the Atmospheric Tomography mission, Atmos. Chem. Phys., 18, 16809-16828, doi:10.5194/acp-18-16809-2018.
- Strode, S., et al. (2018), ATom: Observed and GEOS-5 Simulated CO Concentrations with Tagged Tracers for ATom-1, Ornl Daac, doi:10.3334/ORNLDAAC/1604.
- Strode, S., et al. (2018), Forecasting carbon monoxide on a global scale for the ATom-1 aircraft mission: insights from airborne and satellite observations and modeling, Atmos. Chem. Phys., 18, 10955-10971, doi:10.5194/acp-18-10955-2018.
- Wofsy, S. C., et al. (2018), ATom: Merged Atmospheric Chemistry, Trace Gases, and Aerosols, Ornl Daac, doi:10.3334/ORNLDAAC/1581.
- Collins, W. J., et al. (2017), AerChemMIP: quantifying the effects of chemistry and aerosols in CMIP6, Geosci. Model. Dev., 10, 585-607, doi:10.5194/gmd-10-585-2017.
- Doherty, R. M., et al. (2017), Multi-model impacts of climate change on pollution transport from global emission source regions, Atmos. Chem. Phys., 17, 14219-14237, doi:10.5194/acp-17-14219-2017.
- Hansen, J., et al. (2017), Young people’s burden: requirement of negative CO2 emissions, Earth Syst. Dynam., 8, 577-616, doi:10.5194/esd-8-577-2017.
- Hsu, J., et al. (2017), A radiative transfer module for calculating photolysis rates and solar heating in climate models: Solar-J v7.5, Geosci. Model. Dev., 10, 2525-2545, doi:10.5194/gmd-10-2525-2017.
- Myhre, G., et al. (2017), Multi-model simulations of aerosol and ozone radiative forcing due to anthropogenic emission changes during the period 1990–2015, Atmos. Chem. Phys., 17, 2709-2720, doi:10.5194/acp-17-2709-2017.
- Schnell, J. L., and M. Prather (2017), Co-occurrence of extremes in surface ozone, particulate matter, and temperature over eastern North America, Proc. Natl. Acad. Sci., 114, 2854-2859, doi:10.1073/pnas.1614453114.
- Xu, L., et al. (2017), on US Surface Ozone Variability, Geophys. Res. Lett., doi:10.1002/2017GL073044.
- Schnell, J. L., et al. (2015), Use of North American and European air quality networks to evaluate global chemistry-climate modeling of surface ozone, Atmos. Chem. Phys. Discuss., 15, 1-39, doi:10.5194/acpd-15-1-2015.
- Holmes, C. D., M. Prather, and G. C. M. Vinken (2014), The climate impact of ship NOx emissions: an improved estimate accounting for plume chemistry, Atmos. Chem. Phys., 14, 6801-6812, doi:10.5194/acp-14-6801-2014.
- Hsu, J., and M. Prather (2014), Is the residual vertical velocity a good proxy for stratosphere-troposphere exchange of ozone?, Geophys. Res. Lett., 41, doi:10.1002/2014GL061994.
- Schnell, J. L., et al. (2014), Skill in forecasting extreme ozone pollution episodes with a global atmospheric chemistry model, Atmos. Chem. Phys., 14, 7721-7739, doi:10.5194/acp-14-7721-2014.
- Holmes, C. D., et al. (2013), Future methane, hydroxyl, and their uncertainties: key climate and emission parameters for future predictions, Atmos. Chem. Phys., 13, 285-302, doi:10.5194/acp-13-285-2013.
- Holmes, C. D., Q. Tang, and M. Prather (2013), Uncertainties in climate assessment for the case of aviation NO, Proc. Natl. Acad. Sci., 108, 10997-11002, doi:10.1073/pnas.1101458108.
- Neu, J. L., and M. Prather (2012), Toward a more physical representation of precipitation scavenging in global chemistry models: cloud overlap and ice physics and their impact on tropospheric ozone, Atmos. Chem. Phys., 12, 3289-3310, doi:10.5194/acp-12-3289-2012.
- Tang, Q., and M. Prather (2012), Tropospheric column ozone: matching individual profiles from Aura OMI and TES with a chemistry-transport model, Atmos. Chem. Phys., 12, 10441-10452, doi:10.5194/acp-12-10441-2012.
- Tang, Q., and M. Prather (2012), Five blind men and the elephant: what can the NASA Aura ozone measurements tell us about stratosphere-troposphere exchange?, Atmos. Chem. Phys., 12, 2357-2380, doi:10.5194/acp-12-2357-2012.
- Tang, Q., M. Prather, and J. Hsu (2011), Stratosphere‐troposphere exchange ozone flux related to deep convection, Geophys. Res. Lett., 38, L03806, doi:10.1029/2010GL046039.
- Hsu, J., and M. Prather (2010), Global long‐lived chemical modes excited in a 3‐D chemistry transport model: Stratospheric N2O, NOy, O3 and CH4 chemistry, Geophys. Res. Lett., 37, L07805, doi:10.1029/2009GL042243.
- Tang, Q., and M. Prather (2010), Correlating tropospheric column ozone with tropopause folds: the Aura-OMI satellite data, Atmos. Chem. Phys., 10, 9681-9688, doi:10.5194/acp-10-9681-2010.
- Anenberg, S. C., et al. (2009), Intercontinental Impacts of Ozone Pollution on Human Mortality, Environ. Sci. Technol., 43, 6482-6487.
- Hsu, J., and M. Prather (2009), Stratospheric variability and tropospheric ozone, J. Geophys. Res., 114, D06102, doi:10.1029/2008JD010942.
- Neu, J. L., et al. (2008), Oceanic alkyl nitrates as a natural source of tropospheric ozone, Geophys. Res. Lett., 35, L13814, doi:10.1029/2008GL034189.
- Sanderson, M. G., et al. (2008), A multi-model study of the hemispheric transport and deposition of oxidised nitrogen, Geophys. Res. Lett., 35, L17815, doi:10.1029/2008GL035389.
- Neu, J. L., M. Prather, and J. E. Penner (2007), Global atmospheric chemistry: Integrating over fractional cloud cover, J. Geophys. Res., 112, D11306, doi:10.1029/2006JD008007.
- Baker, D. F., et al. (2006), TransCom 3 inversion intercomparison: Impact of transport model errors on the interannual variability of regional CO2 fluxes, 1988–2003, Global Biogeochem. Cycles, 20, GB1002, doi:10.1029/2004GB002439.
- Bortz, S. E., et al. (2006), Ozone, water vapor, and temperature in the upper tropical troposphere: Variations over a decade of MOZAIC measurements, J. Geophys. Res., 111, D05305, doi:10.1029/2005JD006512.
- Patra, P. K., et al. (2006), Sensitivity of inverse estimation of annual mean CO2 sources and sinks to ocean-only sites versus all-sites observational networks, Geophys. Res. Lett., 33, L05814, doi:10.1029/2005GL025403.
- Shindell, D., et al. (2006), Multimodel simulations of carbon monoxide: Comparison with observations and projected near-future changes, J. Geophys. Res., 111, D19306, doi:10.1029/2006JD007100.
- Stevenson, D. S., et al. (2006), Multimodel ensemble simulations of present-day and near-future tropospheric ozone, J. Geophys. Res., 111, D08301, doi:10.1029/2005JD006338.
- van Noije, T. P. C., et al. (2006), Multi-model ensemble simulations of tropospheric NO2 compared with GOME retrievals for the year 2000, Atmos. Chem. Phys., 6, 2943-2979, doi:10.5194/acp-6-2943-2006.
- Lamarque, J.-F., et al. (2005), Assessing future nitrogen deposition and carbon cycle feedback using a multimodel approach: Analysis of nitrogen deposition, J. Geophys. Res., 110, D19303, doi:10.1029/2005JD005825.
- Hsu, J., et al. (2004), Are the TRACE-P measurements representative of the western Pacific during March 2001?, J. Geophys. Res., 109, D02314, doi:10.1029/2003JD004002.
- Wild, O., et al. (2004), Chemical transport model ozone simulations for spring 2001 over the western Pacific: Regional ozone production and its global impacts, J. Geophys. Res., 109, D15S02, doi:10.1029/2003JD004041.
- Wild, O., et al. (2003), Chemical transport model ozone simulations for spring 2001 over the western Pacific: Comparisons with TRACE-P lidar, ozonesondes, and Total Ozone Mapping Spectrometer columns, J. Geophys. Res., 108, 8826, doi:10.1029/2002JD003283.
- Olson, J., et al. (1997), Results from theIPCC photchemical model intercomparison (PhotoComp), J. Geophys. Res., 102, 5979-5991.
- Salawitch, R., et al. (1994), The Diurnal Variation of Hydrogen, Nitrogen, and Chlorine Radicals: Implications for the Heterogeneous Production of HNO2, Geophys. Res. Lett., 21, 2551-2554.
- Kinne, S., B. Toon, and M. Prather (1992), Buffering of stratospheric circulations by changing amounts of tropical ozone: a Pinatubo case study, Geophys. Res. Lett., 19, 1927-1930.