John H. Seinfeld
Organization:
California Institute of Technology
Email:
Business Address:
Department of Chemical Engineering
1200 East California Boulevard
Mail Code 210-41
Pasadena, CA 91125
United StatesFirst Author Publications:
- Seinfeld, J. H., et al. (2004), Understanding Aerosols: Scientific Objectives, Measurement Needs, and Challenges Motivating the PARAGON Aerosol Initiative, Bull. Am. Meteorol. Soc., 1503, doi:10.1175/BAMS-85-10-1503.
- Seinfeld, J. H., et al. (2004), Ace-Asia: Regional Climatic and Atmospheric Chemical Effects of Asian Dust and Pollution, Bull. Am. Meteorol. Soc., 367-380, doi:10.1175/BAMS-85-3-367.
Co-Authored Publications:
- Bilsback, K. R., et al. (2023), Vapors Are Lost to Walls, Not to Particles on the Wall: ArtifactCorrected Parameters from Chamber Experiments and Implications for Global Secondary Organic Aerosol, Environ. Sci. Technol., 57, 53-63, doi:10.1021/acs.est.2c03967.
- MacDonald, A. B., et al. (2020), On the relationship between cloud water composition and cloud droplet number concentration, Atmos. Chem. Phys., 20, 7645-7665, doi:10.5194/acp-20-7645-2020.
- Schulze, B. C., et al. (2020), Accepted article online 3 JUN 2020 Characterization of Aerosol Hygroscopicity Over the Northeast Pacific Ocean: Impacts on Prediction of CCN and Stratocumulus Cloud Droplet Number Concentrations, Earth and Space Science, 7, e2020EA001098, doi:10.1029/2020EA001098.
- Mardi, A. H., et al. (2019), All Rights Reserved. Effects of Biomass Burning on Stratocumulus Droplet Characteristics, Drizzle Rate, and Composition, J. Geophys. Res., 124, 12,301-12,318, doi:10.1029/2019JD031159.
- Sorooshian, A., et al. (2019), Aerosol–Cloud–Meteorology Interaction Airborne Field Investigations: Using Lessons Learned from the U.S. West Coast in the Design of ACTIVATE off the U.S. East Coast, Bull. Am. Meteorol. Soc., 1511-1528, doi:10.1175/BAMS-D-18-0100.1.
- Mardi, A. H., et al. (2018), Biomass Burning Plumes in the Vicinity of the California Coast: Airborne Characterization of Physicochemical Properties, Heating Rates, and Spatiotemporal Features, J. Geophys. Res., 123, 13,560-13,582, doi:10.1029/2018JD029134.
- Dadashazar, H., et al. (2017), Relationships between giant sea salt particles and clouds inferred from aircraft physicochemical data, J. Geophys. Res., 122, 3421-3434, doi:10.1002/2016JD026019.
- Kahn, R., et al. (2017), SAM-CAAM: A Concept for Acquiring Systematic Aircraft Measurements to Characterize Aerosol Air Masses, Bull. Am. Meteoro. Soc., 2215-2228, doi:10.1175/BAMS-D-16-0003.1.
- Crosbie, E., et al. (2016), Stratocumulus Cloud Clearings and Notable Thermodynamic and Aerosol Contrasts across the Clear–Cloudy Interface, J. Atmos. Sci., 73, 1083-1099, doi:10.1175/JAS-D-15-0137.1.
- Wang, Z., et al. (2016), Contrasting cloud composition between coupled and decoupled marine boundary layer clouds, J. Geophys. Res., 121, doi:10.1002/2016JD025695.
- Alvarado, M. J., et al. (2015), Investigating the links between ozone and organic aerosol chemistry in a biomass burning plume from a prescribed fire in California chaparral, Atmos. Chem. Phys., 15, 6667-6688, doi:10.5194/acp-15-6667-2015.
- Chen, Y., et al. (2014), Satellite-based estimate of global aerosol–cloud radiative forcing by marine warm clouds, Nature Geoscience, 7, 643-646, doi:10.1038/NGEO2214.
- Ryerson, T. B., et al. (2013), The 2010 California Research at the Nexus of Air Quality and Climate Change (CalNex) field study, J. Geophys. Res., 118, 5830-5866, doi:10.1002/jgrd.50331.
- Chen, W., et al. (2010), Global climate response to anthropogenic aerosol indirect effects: Present day and year 2100, J. Geophys. Res., 115, D12207, doi:10.1029/2008JD011619.
- Eidhammer, T., et al. (2010), Ice Initiation by Aerosol Particles: Measured and Predicted Ice Nuclei Concentrations versus Measured Ice Crystal Concentrations in an Orographic Wave Cloud, J. Atmos. Sci., 67, 2417-2436, doi:10.1175/2010JAS3266.1.
- Henze, D., J. H. Seinfeld, and D. Shindell (2009), Inverse modeling and mapping US air quality influences of inorganic PM2.5 precursor emissions using the adjoint of GEOS-Chem, Atmos. Chem. Phys., 9, 5877-5903, doi:10.5194/acp-9-5877-2009.
- Paulot, F., et al. (2009), Isoprene photooxidation: New insights into the production of acids and organic nitrates, Atmos. Chem. Phys., 9, 1479-1501.
- Paulot, F., et al. (2009), Unexpected epoxide formation in the gas-phase photooxidation of isoprene, Science, 325, 730-733.
- Chen, W., et al. (2008), Sensitivity of multiangle imaging to the optical and microphysical properties of biomass burning aerosols, J. Geophys. Res., 113, D10203, doi:10.1029/2007JD009414.
- Docherty, K. S., et al. (2008), Apportionment of Primary and Secondary Organic Aerosols in Southern California during the 2005 Study of Organic Aerosols in Riverside (SOAR-1), Environ. Sci. Technol., 42, 7655-7662, doi:10.1021/es8008166.
- Sorooshian, A., et al. (2008), Rapid, size-resolved aerosol hygroscopic growth measurements: differential aerosol sizing and hygroscopicity spectrometer probe (DASH-SP), Aerosol Sci. Tech., 42, 445-464.
- Kuzmanoski, et al. (2007), Aerosol properties computed from aircraft-based observations during the ACE-Asia campaign: 2. A case study of lidar ratio closure and aerosol radiative effects, Aerosol Sci. Tech., 41, 231-243, doi:10.1080/02786820601146-977.
- Kuzmanoski, et al. (2007), Aerosol properties computed from aircraft-based observations during the ACE-Asia campaign: 1. Aerosol size distributions retrieved from optical thickness measurements, Aerosol Sci. Tech., 41, 202.
- Fehsenfeld, F., et al. (2006), International Consortium for Atmospheric Research on Transport and Transformation (ICARTT): North America to Europe: Overview of the 2004 summer field study, J. Geophys. Res., 111, D23S01, doi:10.1029/2006JD007829.
- Heald, C. L., et al. (2006), Concentrations and sources of organic carbon aerosols in the free troposphere over North America, J. Geophys. Res., 111, D23S47, doi:10.1029/2006JD007705.
- Heald, C. L., et al. (2005), A large organic aerosol source in the free troposphere missing from current models, Geophys. Res. Lett., 32, L18809, doi:10.1029/2005GL023831.
- Conant, W. C., et al. (2004), Aerosol--cloud drop concentration closure in warm cumulus, J. Geophys. Res., 109, D13204, doi:10.1029/2003JD004324.
- Diner, D., et al. (2004), Understanding Aerosols Paragon: An Integrated Approach for Characterizing Aerosol Climate Impacts and Environmental Interactions, Bull. Am. Meteorol. Soc., 1491, doi:10.1175/BAMS-85-10-1491.
- Fridlind, A. M., et al. (2004), Evidence for the Predominance of Mid-Tropospheric Aerosols as Subtropical Anvil Cloud Nuclei, Science, 304, 718.
- Kahn, R., et al. (2004), Environmental snapshots from ACE-Asia, J. Geophys. Res., 109, D19S14, doi:10.1029/2003JD004339.
- Kahn, R., et al. (2004), Environmental snapshots from ACE-Asia, J. Geophys. Res., 109, D19S14, doi:10.1029/2003JD004339.
- Kahn, R., et al. (2004), Understanding Aerosols: Aerosol Data Sources and Their Roles within PARAGON, Bull. Am. Meteorol. Soc., 1511, doi:10.1175/BAMS-85-10-1511.
- Schmid, B., et al. (2003), Column closure studies of lower tropospheric aerosol and water vapor during ACE-Asia using airborne Sun photometer and airborne in situ and ship-based lidar measurements, J. Geophys. Res., 108, 8656, doi:10.1029/2002JD003361.
- Wang, J., et al. (2002), Clear-column radiative closure during ACE-Asia: Comparison of multiwavelength extinction derived from particle size and composition with results from sunphotometry, J. Geophys. Res., 107, 4688, doi:10.1029/2002JD002465.
- Collins, D. R., et al. (2000), In situ aerosol size distributions and clear column radiative closure during ACE-2, Tellus, 52, 498-525.
- Durkee, P. A., et al. (2000), Regional aerosol properties from satellite observations: ACE-1, TARFOX and ACE-2 results, Tellus, 52, 484-497.
- Livingston, J. M., et al. (2000), Shipboard sunphotometer measurements of aerosol optical depth spectra and columnar water vapor during ACE 2 and comparison to selected land, ship, aircraft, and satellite measurements, Tellus, 52, 594-619.
- Schmid, B., et al. (2000), Clear sky closure studies of lower tropospheric aerosol and water vapor during ACE 2 using airborne sunphotometer, airborne in-situ, space-borne, and ground-based measurements, Tellus, 52, 568-593.