Armin Sorooshian
Organization:
University of Arizona
Email:
Business Phone:
Work:
(520) 626-5858
Mobile:
(520) 465-6221
Fax:
(520) 621-6048
Business Address:
Department of Chemical and Environmental Engineering
1133 E. James E. Rogers Way, Room 108E
Tucson, AZ 85721
United StatesWebsite:
First Author Publications:
- Sorooshian, A., et al. (2023), Spatially coordinated airborne data and complementary products for aerosol, gas, cloud, and meteorological studies: the NASA ACTIVATE dataset, Earth Syst. Sci. Data, 15, 3419-3472, doi:10.5194/essd-15-3419-2023.
- Sorooshian, A., et al. (2020), Atmospheric Research Over the Western North Atlantic Ocean Region and North American East Coast: A Review of Past Work and Challenges Ahead, J. Geophys. Res., 125, e2019JD031626, doi:10.1029/2019JD031626.
- Sorooshian, A., et al. (2019), Aerosol–Cloud–Meteorology Interaction Airborne Field Investigations: Using Lessons Learned from the U.S. West Coast in the Design of ACTIVATE off the U.S. East Coast, Bull. Am. Meteorol. Soc., 1511-1528, doi:10.1175/BAMS-D-18-0100.1.
- Sorooshian, A., et al. (2017), Contrasting aerosol refractive index and hygroscopicity in the inflow and outflow of deep convective storms: Analysis of airborne data from DC3, J. Geophys. Res., 122, 4565-4577, doi:10.1002/2017JD026638.
- Sorooshian, A., et al. (2013), A satellite perspective on cloud water to rain water conversion rates and relationships with environmental conditions, J. Geophys. Res., 118, 1-8, doi:10.1002/jgrd.50523.
- Sorooshian, A., et al. (2010), Deconstructing the precipitation susceptibility construct: Improving methodology for aerosol‐cloud precipitation studies, J. Geophys. Res., 115, D17201, doi:10.1029/2009JD013426.
- Sorooshian, A., et al. (2009), On the precipitation susceptibility of clouds to aerosol perturbations, Geophys. Res. Lett., 36, L13803, doi:10.1029/2009GL038993.
- Sorooshian, A., et al. (2008), Rapid, size-resolved aerosol hygroscopic growth measurements: differential aerosol sizing and hygroscopicity spectrometer probe (DASH-SP), Aerosol Sci. Tech., 42, 445-464.
Co-Authored Publications:
- Crosbie, E., et al. (2024), Measurement report: Cloud and environmental properties associated with aggregated shallow marine cumulus and cumulus congestus, Atmos. Chem. Phys., doi:10.5194/acp-24-6123-2024.
- Dmitrovic, S., et al. (2024), High Spectral Resolution Lidar – generation 2 (HSRL-2) retrievals of ocean surface wind speed: methodology and evaluation, Atmos. Meas. Tech., 17, 3515-3532, doi:10.5194/amt-17-3515-2024.
- Edwards, E., et al. (2024), Sea salt reactivity over the northwest Atlantic: an in-depth look using the airborne ACTIVATE dataset, Atmos. Chem. Phys., doi:10.5194/acp-24-3349-2024.
- Li, X., et al. (2024), Process Modeling of Aerosol‐Cloud Interaction in Summertime Precipitating Shallow Cumulus Over the Western North Atlantic, J. Geophys. Res., 129, e2023JD039489, doi:10.1029/2023JD039489.
- Lorenzo, G. R., et al. (2024), An emerging aerosol climatology via remote sensing over Metro Manila, the Philippines, Atmos. Chem. Phys., doi:10.5194/acp-23-10579-2023.
- Schlosser, J., et al. (2024), Maximizing the Volume of Collocated Data from Two Coordinated Suborbital Platforms, J. Atmos. Oceanic Technol., 41, 189-201, doi:10.1175/JTECH-D-23-0001.1.
- Siu, L. W., et al. (2024), Summarizing multiple aspects of triple collocation analysis in a single diagram, Frontiers in Remote Sensing, 5, 10.3389/frsen.2024.1395442, doi:10.3389/frsen.2024.1395442.
- Siu, L. W., et al. (2024), Retrievals of aerosol optical depth over the western North Atlantic Ocean during ACTIVATE, Atmos. Meas. Tech., 17, 2739-2759, doi:10.5194/amt-17-2739-2024.
- Xu, Y., et al. (2024), Boundary Layer Structures Over the Northwest Atlantic Derived From Airborne High Spectral Resolution Lidar and Dropsonde Measurements During the ACTIVATE Campaign, J. Geophys. Res., 129, e2023JD039878, doi:10.1029/2023JD039878.
- Brunke, M. A., et al. (2023), Aircraft Observations of Turbulence in Cloudy and Cloud-Free Boundary Layers Over the Western North Atlantic Ocean From ACTIVATE and Implications for the Earth System Model Evaluation and Development, J. Geophys. Res..
- Corral, A., et al. (2023), Environmental Science: Atmospheres View Article Online PAPER View Journal Dimethylamine in cloud water: a case study over, The Author(s). Published by the Royal Society of Chemistry Environ. Sci.: Atmos, 10.1039/D2EA00117A, doi:10.1039/d2ea00117a.
- Ferrare, R., et al. (2023), Airborne HSRL-2 measurements of elevated aerosol depolarization associated with non-spherical sea salt, TYPE Original Research, doi:10.3389/frsen.2023.1143944.
- Gryspeerdt, E., et al. (2023), Uncertainty in aerosol–cloud radiative forcing is driven by clean conditions, Atmos. Chem. Phys., doi:10.5194/acp-23-4115-2023.
- Li, X., et al. (2023), Large-Eddy Simulations of Marine Boundary Layer Clouds Associated with Cold-Air Outbreaks during the ACTIVATE Campaign. Part II: Aerosol–Meteorology–Cloud Interaction, J. Atmos. Sci., 80, 1025-1045, doi:10.1175/JAS-D-21-0324.1.
- Nied, J., et al. (2023), A cloud detection neural network for above-aircraft clouds using airborne cameras, Frontiers in Remote Sensing, 4, 10.3389/frsen.2023.1118745, doi:10.3389/frsen.2023.1118745.
- Painemal, D., et al. (2023), Wintertime Synoptic Patterns of Midlatitude Boundary Layer Clouds Over the Western North Atlantic: Climatology and Insights From In Situ ACTIVATE Observations, J. Geophys. Res., 128, e2022JD037725, doi:10.1029/2022JD037725.
- Painemal, D., et al. (2023), Wintertime Synoptic Patterns of Midlatitude Boundary Layer Clouds Over the Western North Atlantic: Climatology and Insights From In Situ ACTIVATE Observations, J. Geophys. Res., 128, e2022JD037725, doi:10.1029/2022JD037725.
- Vömel, H. 1. ✉., et al. (2023), OPEN Dropsonde observations during Data Descriptor the Aerosol Cloud meTeorology Interactions oVer the western ATlantic Experiment, Nature, doi:10.1038/s41597-023-02647-5.
- Chen, J., et al. (2022), Impact of Meteorological Factors on the Mesoscale Morphology of Cloud Streets during a Cold-Air Outbreak over the Western North Atlantic, J. Atmos. Sci., 79, 2863-2879, doi:10.1175/JAS-D-22-0034.1.
- Christensen, M. W., et al. (2022), Opportunistic experiments to constrain aerosol effective radiative forcing, Atmos. Chem. Phys., doi:10.5194/acp-22-641-2022.
- Christensen, M. W., et al. (2022), Opportunistic experiments to constrain aerosol effective radiative forcing, Atmos. Chem. Phys., doi:10.5194/acp-22-641-2022.
- Corral, A., et al. (2022), Cold Air Outbreaks Promote New Particle Formation Off the U.S. East Coast, Geophys. Res. Lett..
- Dadashazar, H., et al. (2022), Analysis of MONARC and ACTIVATE Airborne Aerosol Data for Aerosol-Cloud Interaction Investigations: Efficacy of Stairstepping Flight Legs for Airborne In Situ Sampling, hosseind@arizona.edu (H.D.armin@arizona.edu (A.S., 13, 1242, doi:10.3390/atmos13081242.
- Dadashazar, H., et al. (2022), Organic enrichment in droplet residual particles relative to out of cloud over the northwestern Atlantic: analysis of airborne ACTIVATE data, Atmos. Chem. Phys., doi:10.5194/acp-22-13897-2022.
- Gryspeerdt, E., et al. (2022), The impact of sampling strategy on the cloud droplet number concentration estimated from satellite data, Atmos. Meas. Tech., doi:10.5194/amt-2021-371.
- Hilario, M., et al. (2022), Particulate Oxalate-To-Sulfate Ratio as an Aqueous Processing Marker: Similarity Across Field Campaigns and Limitations, Geophys. Res. Lett..
- Kacenelenbogen, M. S., et al. (2022), Identifying chemical aerosol signatures using optical suborbital observations: how much can optical properties tell us about aerosol composition?, Atmos. Chem. Phys., doi:10.5194/acp-22-3713-2022.
- Kirschler, S., et al. (2022), Seasonal updraft speeds change cloud droplet number concentrations in low-level clouds over the western North Atlantic, Atmos. Chem. Phys., doi:10.5194/acp-22-8299-2022.
- Li, X., et al. (2022), Large-Eddy Simulations of Marine Boundary Layer Clouds Associated with Cold-Air Outbreaks during the ACTIVATE Campaign. Part I: Case Setup and Sensitivities to Large-Scale Forcings, J. Atmos. Sci., 79, 73-100, doi:10.1175/JAS-D-21-0123.1.
- Schlosser, J., et al. (2022), Polarimeter + Lidar–Derived Aerosol Particle Number Concentration, Front. Remote Sens., 3, 885332, doi:10.3389/frsen.2022.885332.
- Tornow, F., et al. (2022), Dilution of Boundary Layer Cloud Condensation Nucleus Concentrations by Free Tropospheric Entrainment During Marine Cold Air Outbreaks, Geophys. Res. Lett., 49, e2022GL09844, doi:10.1029/2022GL098444.
- Aldhaif, A. M., et al. (2021), An Aerosol Climatology and Implications for Clouds at a Remote Marine Site: Case Study Over Bermuda, J. Geophys. Res., 126, doi:10.1029/2020JD034038.
- Braun, R., et al. (2021), Cloud, Aerosol, and Radiative Properties Over the Western North Atlantic Ocean, J. Geophys. Res..
- Corral, A., et al. (2021), All Rights Reserved. An Overview of Atmospheric Features Over the Western North Atlantic Ocean and North American East Coast – Part 1: Analysis of Aerosols, Gases, and Wet Deposition Chemistry, J. Geophys. Res., 126, e2020JD032592, doi:10.1029/2020JD032592.
- Dadashazar, H., et al. (2021), Cloud drop number concentrations over the western North Atlantic Ocean: seasonal cycle, aerosol interrelationships, and other influential factors, Atmos. Chem. Phys., 21, 10499-10526, doi:10.5194/acp-21-10499-2021.
- Dadashazar, H., et al. (2021), Aerosol responses to precipitation along North American air trajectories arriving at Bermuda, Atmos. Chem. Phys., 21, 16121-16141, doi:10.5194/acp-21-16121-2021.
- Edwards, E., et al. (2021), Impact of various air mass types on cloud condensation nuclei concentrations along coastal southeast Florida, Atmos. Environ., 254, 118371, doi:10.1016/j.atmosenv.2021.118371.
- Gonzalez, M. E., et al. (2021), Contrasting the size-resolved nature of particulate arsenic, cadmium, and lead among diverse regions, Atmospheric Pollution Research, xxx, doi:10.1016/j.apr.2021.01.002.
- Hilario, M., et al. (2021), Measurement report: Long-range transport patterns into the tropical northwest Pacific during the CAMP2Ex aircraft campaign: chemical composition, size distributions, and the impact of convection, Atmos. Chem. Phys., 21, 3777-3802, doi:10.5194/acp-21-3777-2021.
- Lorenzo, G. R., et al. (2021), Measurement report: Firework impacts on air quality in Metro Manila, Philippines, during the 2019 New Year revelry, Atmos. Chem. Phys., 21, 6155-6173, doi:10.5194/acp-21-6155-2021.
- Ma, L., et al. (2021), Contrasting wet deposition composition between three diverse islands and coastal North American sites, Atmos. Environ., 244, 117919, doi:10.1016/j.atmosenv.2020.117919.
- Mardi, A. H., et al. (2021), Biomass Burning Over the United States East Coast and Western North Atlantic Ocean: Implications for Clouds and Air Quality, J. Geophys. Res., 126, e2021JD034916, doi:10.1029/2021JD034916.
- Painemal, D., et al. (2021), All Rights Reserved. An Overview of Atmospheric Features Over the Western North Atlantic Ocean and North American East Coast— Part 2: Circulation, Boundary Layer, and Clouds, J. Geophys. Res., 126, e2020JD033423, doi:10.1029/2020JD033423.
- Seethala, C., et al. (2021), On Assessing ERA5 and MERRA2 Representations of Cold-Air Outbreaks Across the Gulf Stream, Geophys. Res. Lett..
- Aldhaif, A. M., et al. (2020), Sources, frequency, and chemical nature of dust events impacting the United States East Coast, Atmos. Environ., 231, 117456, doi:10.1016/j.atmosenv.2020.117456.
- Braun, R. A., et al. (2020), Long-range aerosol transport and impacts on size-resolved aerosol composition in Metro Manila, Philippines, Atmos. Chem. Phys., 20, 2387-2405, doi:10.5194/acp-20-2387-2020.
- Hilario, M., et al. (2020), Characterizing Weekly Cycles of Particulate Matter in a Coastal Megacity: The Importance of a Seasonal, Size‐Resolved, and Chemically Speciated Analysis, J. Geophys. Res., 125, e2020JD032614, doi:10.1029/2020JD032614.
- MacDonald, A. B., et al. (2020), On the relationship between cloud water composition and cloud droplet number concentration, Atmos. Chem. Phys., 20, 7645-7665, doi:10.5194/acp-20-7645-2020.
- Park, H. J., et al. (2020), Predicting Vertical Concentration Profiles in the Marine Atmospheric Boundary Layer With a Markov Chain Random Walk Model, J. Geophys. Res., 125, e2020JD032731, doi:10.1029/2020JD032731.
- Schlosser, J., et al. (2020), Relationships Between Supermicrometer Sea Salt Aerosol and Marine Boundary Layer Conditions: Insights From Repeated Identical Flight Patterns, J. Geophys. Res., 125, e2019JD032346, doi:10.1029/2019JD032346.
- Schulze, B. C., et al. (2020), Accepted article online 3 JUN 2020 Characterization of Aerosol Hygroscopicity Over the Northeast Pacific Ocean: Impacts on Prediction of CCN and Stratocumulus Cloud Droplet Number Concentrations, Earth and Space Science, 7, e2020EA001098, doi:10.1029/2020EA001098.
- Stahl, C., et al. (2020), Sorooshian, A, Philippines. Scientific Data, 7, 128, doi:10.1038/s41597-020-0466-y.
- Stahl, C., et al. (2020), Sources and characteristics of size-resolved particulate organic acids and methanesulfonate in a coastal megacity: Manila, Philippines, Atmos. Chem. Phys., 20, 15907-15935, doi:10.5194/acp-20-15907-2020.
- AzadiAghdam, M., et al. (2019), On the nature of sea salt aerosol at a coastal megacity: Insights from Manila, T Philippines in Southeast Asia, Atmos. Environ., 216, 116922, doi:10.1016/j.atmosenv.2019.116922.
- Brunke, M. A., et al. (2019), All Rights Reserved. Subtropical Marine Low Stratiform Cloud Deck Spatial Errors in the E3SMv1 Atmosphere Model, Geophys. Res. Lett., 46, 12,598-12,607, doi:10.1029/2019GL084747.
- Cruz, M. T., et al. (2019), Size-resolved composition and morphology of particulate matter during the southwest monsoon in Metro Manila, Philippines, Atmos. Chem. Phys., 19, 10675-10696, doi:10.5194/acp-19-10675-2019.
- Mardi, A. H., et al. (2019), All Rights Reserved. Effects of Biomass Burning on Stratocumulus Droplet Characteristics, Drizzle Rate, and Composition, J. Geophys. Res., 124, 12,301-12,318, doi:10.1029/2019JD031159.
- Aldhaif, A. M., et al. (2018), Characterization of the Real Part of Dry Aerosol Refractive Index Over North America From the Surface to 12 km, J. Geophys. Res., 123, doi:10.1029/2018JD028504.
- Brune, W. H., et al. (2018), Atmospheric oxidation in the presence of clouds during the Deep Convective Clouds and Chemistry (DC3) study, Atmos. Chem. Phys., 18, 14493-14510, doi:10.5194/acp-18-14493-2018.
- Ervens, B., et al. (2018), Is there an aerosol signature of chemical cloud processing?, Atmos. Chem. Phys., 18, 16099-16119, doi:10.5194/acp-18-16099-2018.
- Mardi, A. H., et al. (2018), Biomass Burning Plumes in the Vicinity of the California Coast: Airborne Characterization of Physicochemical Properties, Heating Rates, and Spatiotemporal Features, J. Geophys. Res., 123, 13,560-13,582, doi:10.1029/2018JD029134.
- Dadashazar, H., et al. (2017), Relationships between giant sea salt particles and clouds inferred from aircraft physicochemical data, J. Geophys. Res., 122, 3421-3434, doi:10.1002/2016JD026019.
- Perring, A., et al. (2017), In situ measurements of water uptake by black carbon-containing aerosol in wildfire plumes, J. Geophys. Res., 122, 1086-1097, doi:10.1002/2016JD025688.
- Crosbie, E., et al. (2016), Stratocumulus Cloud Clearings and Notable Thermodynamic and Aerosol Contrasts across the Clear–Cloudy Interface, J. Atmos. Sci., 73, 1083-1099, doi:10.1175/JAS-D-15-0137.1.
- Raman, A., A. Arellano, and A. Sorooshian (2016), Decreasing Aerosol Loading in the North American Monsoon Region, Atmosphere, 7, 24, doi:10.3390/atmos7020024.
- Shingler, T., et al. (2016), Airborne characterization of subsaturated aerosol hygroscopicity and dry refractive index from the surface to 6.5km during the SEAC4RS campaign, J. Geophys. Res., 121, 4188-4210, doi:10.1002/2015JD024498.
- Shingler, T., et al. (2016), Ambient observations of hygroscopic growth factor and f(RH) below 1: Case studies from surface and airborne measurements, J. Geophys. Res., 121, doi:10.1002/2016JD025471.
- Wang, Z., et al. (2016), Contrasting cloud composition between coupled and decoupled marine boundary layer clouds, J. Geophys. Res., 121, doi:10.1002/2016JD025695.
- Hersey, S. P., et al. (2015), An overview of regional and local characteristics of aerosols in South Africa using satellite, ground, and modeling data, Atmos. Chem. Phys., 15, 4259-4278, doi:10.5194/acp-15-4259-2015.
- Crosbie, E., et al. (2014), A Multi-Year Aerosol Characterization for the Greater Tehran Area Using Satellite, Surface, and Modeling Data, Atmosphere, 5, 178-197, doi:10.3390/atmos5020178.
- Gentry, D., et al. (2007), Coastal California Fog as a Unique Habitable Niche: Design for Autonomous Sampling and Preliminary Aerobiological Characterization.