Christopher E. Sioris
Organization:
Harvard–Smithsonian Center for Astrophysics
Email:
Business Address:
Cambridge, MA 02138-1516
United StatesFirst Author Publications:
- Sioris, C. E., et al. (2006), Latitudinal and vertical distribution of bromine monoxide in the lower stratosphere from Scanning Imaging Absorption Spectrometer for Atmospheric Chartography limb scattering measurements, J. Geophys. Res., 111, D14301, doi:10.1029/2005JD006479.
Co-Authored Publications:
- Kiefer, M., et al. (2023), The SPARC water vapour assessment II: biases and drifts of water vapour satellite data records with respect to frost point hygrometer records, Atmos. Meas. Tech., 16, 4589-4642, doi:10.5194/amt-16-4589-2023.
- Read, W. G., et al. (2022), The SPARC Water Vapor Assessment II: assessment of satellite measurements of upper tropospheric humidity, Atmos. Meas. Tech., 15, 3377-3400, doi:10.5194/amt-15-3377-2022.
- Kharol, S. K., et al. (2020), Ceramic industry at Morbi as a large source of SO2 emissions in India, Atmos. Environ., 223, 117243, doi:10.1016/j.atmosenv.2019.117243.
- Fadnavis, S., et al. (2019), Elevated aerosol layer over South Asia worsens the Indian droughts, Scientific Reports, 9, doi:10.1038/s41598-019-46704-9.
- Fadnavis, S., et al. (2019), Elevated aerosol layer over South Asia worsens the Indian droughts, Scientific Reports, 9, doi:10.1038/s41598-019-46704-9.
- Lossow, S., et al. (2019), The SPARC water vapour assessment II: profile-to-profile comparisons of stratospheric and lower mesospheric water vapour data sets obtained from satellites, Atmos. Meas. Tech., 12, 2693-2732, doi:10.5194/amt-12-2693-2019.
- Khosrawi, F., et al. (2018), The SPARC water vapour assessment II: comparison of stratospheric and lower mesospheric water vapour time series observed from satellites, Atmos. Meas. Tech., 11, 4435-4463, doi:10.5194/amt-11-4435-2018.
- Sun, K., et al. (2018), Reevaluating the Use of O2 a1 Δg Band in Spaceborne Remote Sensing of Greenhouse Gases, Geophys. Res. Lett., 45, 5779-5787, doi:10.1029/2018GL077823.
- Lossow, S., et al. (2017), The SPARC water vapour assessment II: comparison of annual, semi-annual and quasi-biennial variations in stratospheric and lower mesospheric water vapour observed from satellites, Atmos. Meas. Tech., 10, 1111-1137, doi:10.5194/amt-10-1111-2017.
- Park, M., et al. (2017), Variability of Stratospheric Reactive Nitrogen and Ozone Related to the QBO, J. Geophys. Res., 122, doi:10.1002/2017JD027061.
- Barker, H. W., et al. (2015), Assessing the quality of active–passive satellite retrievals using broad-band radiances, Q. J. R. Meteorol. Soc., 141, 1294-1305, doi:10.1002/qj.2438.
- Harris, N., et al. (2015), Past changes in the vertical distribution of ozone – Part 3: Analysis and interpretation of trends, Atmos. Chem. Phys., 15, 9965-9982, doi:10.5194/acp-15-9965-2015.
- Tummon, F., et al. (2015), Intercomparison of vertically resolved merged satellite ozone data sets: interannual variability and long-term trends, Atmos. Chem. Phys., 15, 3021-3043, doi:10.5194/acp-15-3021-2015.
- Bourassa, A., et al. (2014), Trends in stratospheric ozone derived from merged SAGE II and Odin-OSIRIS satellite observations, Atmos. Chem. Phys., 14, 6983-6994, doi:10.5194/acp-14-6983-2014.
- McLinden, C. A., et al. (2012), Air quality over the Canadian oil sands: A first assessment using satellite observations, Geophys. Res. Lett., 39, L04804, doi:10.1029/2011GL050273.
- Lamsal, L. N., et al. (2011), Application of satellite observations for timely updates to global anthropogenic NOx emission inventories, Geophys. Res. Lett., 38, L05810, doi:10.1029/2010GL046476.
- Liu, X., et al. (2007), Impact of using different ozone cross sections on ozone profile retrievals from Global Ozone Monitoring Experiment (GOME) ultraviolet measurements, Atmos. Chem. Phys., 7, 3571-3578, doi:10.5194/acp-7-3571-2007.
- Lichtenberg, G., et al. (2006), SCIAMACHY Level 1 data: calibration concept and in-flight calibration, Atmos. Chem. Phys., 6, 5347-5367, doi:10.5194/acp-6-5347-2006.
- Liu, X., et al. (2006), First directly retrieved global distribution of tropospheric column ozone from GOME: Comparison with the GEOS-CHEM model, J. Geophys. Res., 111, D02308, doi:10.1029/2005JD006564.
- Liu, X., et al. (2006), Intercomparison of GOME, ozonesonde, and SAGE II measurements of ozone: Demonstration of the need to homogenize available ozonesonde data sets, J. Geophys. Res., 111, D14305, doi:10.1029/2005JD006718.
- Liu, X., et al. (2006), Tropospheric ozone profiles from a ground-based ultraviolet spectrometer: a new retrieval method, Appl. Opt., 45, 2352-2359.
- Martin, R., et al. (2006), Evaluation of space-based constraints on global nitrogen oxide emissions with regional aircraft measurements over and downwind of eastern North America, J. Geophys. Res., 111, D15308, doi:10.1029/2005JD006680.
- Chance, K., T. Kurosu, and C. E. Sioris (2005), Undersampling correction for array detector-based satellite spectrometers, Appl. Opt., 44, 1296-1304.
- Liu, X., et al. (2005), Ozone profile and tropospheric ozone retrievals from the Global Ozone Monitoring Experiment: Algorithm description and validation, J. Geophys. Res., 110, D20307, doi:10.1029/2005JD006240.
- Liu, X., et al. (2005), Mapping tropospheric ozone profiles from an airborne ultraviolet–visible spectrometer, Appl. Opt., 44, 3312-3319.
- Salawitch, R., et al. (2005), Sensitivity of ozone to bromine in the lower stratosphere, Geophys. Res. Lett., 32, L05811, doi:10.1029/2004GL021504.