Xiong Liu
Organization:
Harvard–Smithsonian Center for Astrophysics
Email:
Business Phone:
Work:
(617) 496-2136 ext. 617496
Business Address:
Harvard-Smithsonian Center for Astrophysics
60 Garden St
Atomic and Molecular Physics Division
Cambridge, MA 02138
United StatesWebsite:
First Author Publications:
- Liu, X., et al. (2010), Ozone profile retrievals from the Ozone Monitoring Instrument, Atmos. Chem. Phys., 10, 2521-2537, doi:10.5194/acp-10-2521-2010.
- Liu, X., et al. (2010), Validation of Ozone Monitoring Instrument (OMI) ozone profiles and stratospheric ozone columns with Microwave Limb Sounder (MLS) measurements, Atmos. Chem. Phys., 10, 2539-2549, doi:10.5194/acp-10-2539-2010.
- Liu, X., K. Chance, and T. Kurosu (2007), Improved ozone profile retrievals from GOME data with degradation correction in reflectance, Atmos. Chem. Phys., 7, 1575-1583, doi:10.5194/acp-7-1575-2007.
- Liu, X., et al. (2006), Tropospheric ozone profiles from a ground-based ultraviolet spectrometer: a new retrieval method, Appl. Opt., 45, 2352-2359.
- Liu, X., et al. (2006), Intercomparison of GOME, ozonesonde, and SAGE II measurements of ozone: Demonstration of the need to homogenize available ozonesonde data sets, J. Geophys. Res., 111, D14305, doi:10.1029/2005JD006718.
- Liu, X., et al. (2005), Ozone profile and tropospheric ozone retrievals from the Global Ozone Monitoring Experiment: Algorithm description and validation, J. Geophys. Res., 110, D20307, doi:10.1029/2005JD006240.
- Liu, X., et al. (2005), Mapping tropospheric ozone profiles from an airborne ultraviolet–visible spectrometer, Appl. Opt., 44, 3312-3319.
Co-Authored Publications:
- Bak, J., et al. (2022), remote sensing Technical Note Impact of Using a New High-Resolution Solar Reference Spectrum on OMI Ozone Profile Retrievals, Remote Sens., 14, 37, doi:10.3390/rs14010037.
- Coddington, O. M., et al. (2022), The TSIS-1 Hybrid Solar Reference Spectrum, Geophys. Res. Lett..
- Lee, H., et al. (2022), Satellite-Based Diagnosis and Numerical Verification of Ozone Formation Regimes over Nine Megacities in East Asia, yujinjo@pusan.ac.kr (Y.-J.J.jm6449@naver.com (J.-M.K.) * Correspondence, chkim2@pusan.ac.kr, 1285, doi:10.3390/rs14051285.
- Lemmouchi, F., et al. (2022), Article 1 Three-dimensional distribution of biomass burning aerosols 2 from Australian wildfires observed by TROPOMI satellite ob- 3 servations 4 5, Tel., 33, 82 39 20 64 21, doi:10.3390/xxxxx.
- Li, C., et al. (2022), Direct retrieval of NO2 vertical columns from UV-Vis (390-495 nm) spectral radiance using a neural network, Journal of Remote Sensing, ID, article, doi:10.34133/2022/9817134.
- Li, C., et al. (2022), AAAS Journal of Remote Sensing Volume 2022, Article ID 9817134, 17 pages, Journal of Remote Sensing, 9817134, doi:10.34133/2022/9817134.
- Naeger, A. R., et al. (2022), Meeting Summary Revolutionary Air-Pollution Applications from Future Tropospheric Emissions: Monitoring of Pollution (TEMPO) Observations, Bull. Am. Meteorol. Soc., doi:10.1175/BAMS-D-21-0050.1.
- Souri, A., et al. (2022), Dealing with spatial heterogeneity in pointwise-to-griddeddata comparisons, Atmos. Meas. Tech., 15, 41-59, doi:10.5194/amt-15-41-2022.
- Souri, A., et al. (2022), Unraveling pathways of elevated ozone induced by the 2020 lockdown in Europe by an observationally constrained regional model using TROPOMI, Atmos. Chem. Phys., doi:10.5194/acp-21-18227-2021.
- Wang, W., et al. (2022), A machine learning model to estimate ground-level ozone concentrations in California using TROPOMI data and high-resolution meteorology, Environment International, 158, 106917, doi:10.1016/j.envint.2021.106917.
- Wang, W., et al. (2022), A machine learning model to estimate ground-level ozone concentrations in California using TROPOMI data and high-resolution meteorology, Environment International, 158, 106917, doi:10.1016/j.envint.2021.106917.
- Wei, J., et al. (2022), Full-coverage mapping and spatiotemporal variations of ground-level ozone (O3) pollution from 2013 to 2020 across China, Remote Sensing of Environment, 270, 112775, doi:10.1016/j.rse.2021.112775.
- Wei, J., et al. (2022), Ground-Level NO2 Surveillance from Space Across China for High Resolution Using Interpretable Spatiotemporally Weighted Artificial Intelligence, Environ. Sci. Technol., doi:10.1021/acs.est.2c03834.
- Zhu, Q., et al. (2022), Satellite-Based Long-Term Spatiotemporal Patterns of Surface Ozone Concentrations in China: 2005–2019, Research A Section 508-conformant HTML version of this article, doi:10.1289/EHP9406.
- Bak, J., et al. (2021), Radiative transfer acceleration based on the principal component analysis and lookup table of corrections: optimization and application to UV ozone profile retrievals, Atmos. Meas. Tech., 14, 2659-2672, doi:10.5194/amt-14-2659-2021.
- Choi, H., et al. (2021), Fast Retrieval of Cloud Parameters Using a Triplet of Wavelengths of Oxygen Dimer Band around 477 nm, Remote Sens., 13, 152, doi:10.3390/rs13010152.
- Lee, H., et al. (2021), Ozone Continues to Increase in East Asia Despite Decreasing NO2: Causes and Abatements, Causes and Abatements. Remote Sens., 13, 2177, doi:10.3390/rs13112177.
- Li, J., et al. (2021), Comprehensive evaluations of diurnal NO2 measurements during DISCOVER-AQ 2011: effects of resolution-dependent representation of NOx emissions, Atmos. Chem. Phys., 21, 11133-11160, doi:10.5194/acp-21-11133-2021.
- Zhao, F., et al. (2021), Ozone profile retrievals from TROPOMI: Implication for the variation of tropospheric ozone during the outbreak of COVID-19 in China, Science of the Total Environment, 764, 142886, doi:10.1016/j.scitotenv.2020.142886.
- Bak, J., et al. (2020), Impact of using a new ultraviolet ozone absorption cross-section dataset on OMI ozone profile retrievals, Atmos. Meas. Tech., 13, 5845-5854, doi:10.5194/amt-13-5845-2020.
- Kang, M., et al. (2020), Spectral Calibration Algorithm for the Geostationary Environment Monitoring Spectrometer (GEMS), Remote Sensing, 12, doi:10.3390/rs12172846.
- Souri, A., et al. (2020), An inversion of NOx and non-methane volatile organic compound (NMVOC) emissions using satellite observations during the KORUS-AQ campaign and implications for surface ozone over East Asia, Atmos. Chem. Phys., 20, 9837-9854, doi:10.5194/acp-20-9837-2020.
- Souri, A., et al. (2020), Quantifying the Impact of Excess Moisture From Transpiration From Crops on an Extreme Heat Wave Event in the Midwestern U.S.: A Top‐Down Constraint From Moderate Resolution Imaging Spectroradiometer Water Vapor Retrieval, J. Geophys. Res., 125, e2019JD031941, doi:10.1029/2019JD031941.
- Abad, G. G., et al. (2019), Five decades observing Earth’s atmospheric trace gases using ultraviolet and visible backscatter solar radiation from space, J. Quant. Spectrosc. Radiat. Transfer, doi:10.1016/j.jqsrt.2019.04.030.
- Bak, J., et al. (2019), Linearization of the effect of slit function changes for improving Ozone Monitoring Instrument ozone profile retrievals, Atmos. Meas. Tech., 12, 3777-3788, doi:10.5194/amt-12-3777-2019.
- Bak, J., et al. (2019), Cross-evaluation of GEMS tropospheric ozone retrieval performance using OMI data and the use of an ozonesonde dataset over East Asia for validation, Atmos. Meas. Tech., 12, 5201-5215, doi:10.5194/amt-12-5201-2019.
- Jung, Y., et al. (2019), Explicit Aerosol Correction of OMI Formaldehyde Retrievals, Earth and Space Science, 6, 2087-2105, doi:10.1029/2019EA000702.
- Kajino, M., et al. (2019), Detectability assessment of a satellite sensor for lower tropospheric ozone responses to its precursors emission changes in East Asian summer, Scientific Reports, 9, 19629, doi:10.1038/s41598-019-55759-7.
- Wang, H., et al. (2019), Ozone Monitoring Instrument (OMI) Total Column Water Vapor version 4 validation and applications, Atmos. Meas. Tech., 12, 5183-5199, doi:10.5194/amt-12-5183-2019.
- Yang, K., and X. Liu (2019), Ozone Profile Climatology for Remote Sensing Retrieval Algorithms, Atmos. Meas. Tech., doi:10.5194/amt-2019-116.
- Gaudel, et al. (2018), Tropospheric Ozone Assessment Report: Present-day distribution and trends of tropospheric ozone relevant to climate and global atmospheric chemistry model evaluation, Elem Sci Anth, 6, 39, doi:10.1525/elementa.
- Gaudel, A., et al. (2018), Tropospheric Ozone Assessment Report: Present-day distribution and trends of tropospheric ozone relevant to climate and global atmospheric chemistry model evaluation, Elem Sci Anth, 6, 39, doi:10.1525/elementa.291.
- Hayashida, S., et al. (2018), Comparison of Satellite Observation with Model Simulation, in: Land-Atmospheric Research Applications in South and Southeast Asia, edited by: Krishna Prasad Vadrevu, Toshimasa Ohara, Chris Justice, edited by, 255-275, doi:10.1007/978-3-319-67474-2_13.
- Huang, G., et al. (2018), Validation of 10-year SAO OMI ozone profile (PROFOZ) product using Aura MLS measurements, Atmos. Meas. Tech., 11, 17-32, doi:10.5194/amt-11-17-2018.
- Jeong, U., et al. (2018), Optimal Estimation-Based Algorithm to Retrieve Aerosol Optical Properties for GEMS Measurements over Asia Mijin Kim 1 , Jhoon Kim 1,2, * ID , Omar Torres 3 , Changwoo Ahn 4 , Woogyung Kim 1,3 ,, doi:10.3390/rs10020162.
- Bak, J., et al. (2017), Characterization and correction of OMPS nadir mapper measurements for ozone profile retrievals, Atmos. Meas. Tech., 10, 4373-4388, doi:10.5194/amt-10-4373-2017.
- Choi, H., et al. (2017), Global O3–CO correlations in a chemistry and transport model during July–August: evaluation with TES satellite observations and sensitivity to input meteorological data and emissions, Atmos. Chem. Phys., 17, 8429-8452, doi:10.5194/acp-17-8429-2017.
- Huang, G., et al. (2017), Validation of 10-year SAO OMI Ozone Profile (PROFOZ) product using ozonesonde observations, Atmos. Meas. Tech., 10, 2455-2475, doi:10.5194/amt-10-2455-2017.
- Liu, C., et al. (2015), Characterization and verification of ACAM slit functions for trace-gas retrievals during the 2011 DISCOVER-AQ flight campaign, Atmos. Meas. Tech., 8, 751-759, doi:10.5194/amt-8-751-2015.
- Wang, J., et al. (2014), A numerical testbed for remote sensing of aerosols, and its demonstration for evaluating retrieval synergy from a geostationary satellite constellation of GEO-CAPE and GOES-R, J. Quant. Spectrosc. Radiat. Transfer, 146, 510-528, doi:10.1016/j.jqsrt.2014.03.020.
- Ziemke, J. R., et al. (2014), Assessment and applications of NASA ozone data products derived from Aura OMI/MLS satellite measurements in context of the GMI chemical transport model, J. Geophys. Res., 119, 5671-5699, doi:10.1002/2013JD020914.
- Liu, C., X. Liu, and K. Chance (2013), The impact of using different ozone cross sections on ozone profile retrievals from OMI UV measurements, J. Quant. Spectrosc. Radiat. Transfer, 130, 365-372, doi:10.1016/j.jqsrt.2013.06.006.
- Wang, L., et al. (2011), Evaluating AURA/OMI ozone profiles using ozonesonde data and EPA surface measurements for August 2006, Atmos. Environ., 45, 5523-5530, doi:10.1016/j.atmosenv.2011.06.012.
- Zoogman, P., et al. (2011), Ozone air quality measurement requirements for a geostationary satellite mission, Atmos. Environ., 45, 7143-7150, doi:10.1016/j.atmosenv.2011.05.058.
- Zhang, L., et al. (2010), Intercomparison methods for satellite measurements of atmospheric composition: application to tropospheric ozone from TES and OMI, Atmos. Chem. Phys., 10, 4725-4739, doi:10.5194/acp-10-4725-2010.
- Worden, J., et al. (2007), Improved tropospheric ozone profile retrievals using OMI and TES radiances, Geophys. Res. Lett., 34, L01809, doi:10.1029/2006GL027806.
- Sioris, C. E., et al. (2006), Latitudinal and vertical distribution of bromine monoxide in the lower stratosphere from Scanning Imaging Absorption Spectrometer for Atmospheric Chartography limb scattering measurements, J. Geophys. Res., 111, D14301, doi:10.1029/2005JD006479.
- Wang, J., et al. (2003), The effects of non-sphericity on geostationary satellite retrievals of dust aerosols, Geophys. Res. Lett., 30, 2293, doi:10.1029/2003GL018697.