Organization
Harvard–Smithsonian Center for Astrophysics
Email
Business Phone
(617) 495-7389
Business Address
Smithsonian Astrophysical Observatory
60 Garden Street
Cambridge, MA 02138
United States
Website
First Author Publications
-
Chance, K., et al. (2013), Tropospheric Emissions: Monitoring of Pollution (TEMPO), Proc. SPIE, 8866.
-
Chance, K., and J. Orphal (2011), Notes Revised ultraviolet absorption cross sections of H2CO for the HITRAN database, J. Quant. Spectrosc. Radiat. Transfer, 112, 1509-1510, doi:10.1016/j.jqsrt.2011.02.002.
-
Chance, K., and R.L. Kurucz (2010), An improved high-resolution solar reference spectrum for earth’s atmosphere measurements in the ultraviolet, visible, and near infrared, J. Quant. Spectrosc. Radiat. Transfer, 111, 1289-1295, doi:10.1016/j.jqsrt.2010.01.036.
-
Chance, K. (2006), Spectroscopic Measurements of Tropospheric Composition from Satellite Measurements in the Ultraviolet And Visible: Steps Toward Continuous Pollution Monitoring from Space, NATO Security through Science Series, 1-25.
-
Chance, K. (2005), Ultraviolet and visible spectroscopy and spacfeborne remote sensing of the Earth's atmosphere, C. R. Physique, 6, 836-847, doi:10.1016/j.crhy.2005.07.010.
-
Chance, K., et al. (2005), Undersampling correction for array detector-based satellite spectrometers, Appl. Opt., 44, 1296-1304.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.
Co-Authored Publications
-
Bak, J., et al. (2022), remote sensing Technical Note Impact of Using a New High-Resolution Solar Reference Spectrum on OMI Ozone Profile Retrievals, Remote Sens., 14, 37, doi:10.3390/rs14010037.
-
Coddington, O.M., et al. (2022), The TSIS-1 Hybrid Solar Reference Spectrum, Geophys. Res. Lett..
-
Naeger, A.R., et al. (2022), Meeting Summary Revolutionary Air-Pollution Applications from Future Tropospheric Emissions: Monitoring of Pollution (TEMPO) Observations, Bull. Am. Meteorol. Soc., doi:10.1175/BAMS-D-21-0050.1.
-
Souri, A., et al. (2022), Dealing with spatial heterogeneity in pointwise-to-griddeddata comparisons, Atmos. Meas. Tech., 15, 41-59, doi:10.5194/amt-15-41-2022.
-
Souri, A., et al. (2022), Unraveling pathways of elevated ozone induced by the 2020 lockdown in Europe by an observationally constrained regional model using TROPOMI, Atmos. Chem. Phys., doi:10.5194/acp-21-18227-2021.
-
Bak, J., et al. (2021), Radiative transfer acceleration based on the principal component analysis and lookup table of corrections: optimization and application to UV ozone profile retrievals, Atmos. Meas. Tech., 14, 2659-2672, doi:10.5194/amt-14-2659-2021.
-
Bak, J., et al. (2020), Impact of using a new ultraviolet ozone absorption cross-section dataset on OMI ozone profile retrievals, Atmos. Meas. Tech., 13, 5845-5854, doi:10.5194/amt-13-5845-2020.
-
Souri, A., et al. (2020), An inversion of NOx and non-methane volatile organic compound (NMVOC) emissions using satellite observations during the KORUS-AQ campaign and implications for surface ozone over East Asia, Atmos. Chem. Phys., 20, 9837-9854, doi:10.5194/acp-20-9837-2020.
-
Souri, A., et al. (2020), Quantifying the Impact of Excess Moisture From Transpiration From Crops on an Extreme Heat Wave Event in the Midwestern U.S.: A Top‐Down Constraint From Moderate Resolution Imaging Spectroradiometer Water Vapor Retrieval, J. Geophys. Res., 125, e2019JD031941, doi:10.1029/2019JD031941.
-
Zhu, L., et al. (2020), Validation of satellite formaldehyde (HCHO) retrievals using observations from 12 aircraft campaigns, Atmos. Chem. Phys., 20, 12329-12345, doi:10.5194/acp-20-12329-2020.
-
Abad, G.G., et al. (2019), Five decades observing Earth’s atmospheric trace gases using ultraviolet and visible backscatter solar radiation from space, J. Quant. Spectrosc. Radiat. Transfer, in press(submitted), doi:10.1016/j.jqsrt.2019.04.030.
-
Abad, G.G., et al. (2019), Five decades observing Earth’s atmospheric trace gases using ultraviolet and visible backscatter solar radiation from space, J. Quant. Spectrosc. Radiat. Transfer, doi:10.1016/j.jqsrt.2019.04.030.
-
Bak, J., et al. (2019), Cross-evaluation of GEMS tropospheric ozone retrieval performance using OMI data and the use of an ozonesonde dataset over East Asia for validation, Atmos. Meas. Tech., 12, 5201-5215, doi:10.5194/amt-12-5201-2019.
-
Bak, J., et al. (2019), Linearization of the effect of slit function changes for improving Ozone Monitoring Instrument ozone profile retrievals, Atmos. Meas. Tech., 12, 3777-3788, doi:10.5194/amt-12-3777-2019.
-
Jung, Y., et al. (2019), Explicit Aerosol Correction of OMI Formaldehyde Retrievals, Earth and Space Science, 6, 2087-2105, doi:10.1029/2019EA000702.
-
Kwon, H., et al. (2019), c Author(s) 2019. CC BY 4.0 License. Description of a formaldehyde retrieval algorithm for the Geostationary Environment Monitoring Spectrometer (GEMS), Atmos. Meas. Tech., doi:10.5194/amt-2019-2.
-
Liao, J., et al. (2019), Towards a satellite formaldehyde – in situ hybrid estimate for organic aerosol abundance, Atmos. Chem. Phys., 19, 2765-2785, doi:10.5194/acp-19-2765-2019.
-
Suleiman, R., et al. (2019), OMI total bromine monoxide (OMBRO) data product: algorithm, retrieval and measurement comparisons, Atmos. Meas. Tech., 12, 2067-2084, doi:10.5194/amt-12-2067-2019.
-
Wang, H., et al. (2019), c Author(s) 2019. CC BY 4.0 License. 1 OMI Total Column Water Vapor Version 4 Validation and Applications, Atmos. Meas. Tech., doi:10.5194/amt-2019-89.
-
Wang, H., et al. (2019), Ozone Monitoring Instrument (OMI) Total Column Water Vapor version 4 validation and applications, Atmos. Meas. Tech., 12, 5183-5199, doi:10.5194/amt-12-5183-2019.
-
Cao, H., et al. (2018), Adjoint inversion of Chinese non-methane volatile organic compound emissions using space-based observations of formaldehyde and glyoxal, Atmos. Chem. Phys., 18, 15017-15046, doi:10.5194/acp-18-15017-2018.
-
Choi, S., et al. (2018), Link Between Arctic Tropospheric BrO Explosion Observed From Space and Sea-Salt Aerosols From Blowing Snow Investigated Using Ozone Monitoring Instrument, J. Geophys. Res., 123, 6954-6983, doi:10.1029/2017JD026889.
-
Huang, G., et al. (2018), Validation of 10-year SAO OMI ozone profile (PROFOZ) product using Aura MLS measurements, Atmos. Meas. Tech., 11, 17-32, doi:10.5194/amt-11-17-2018.
-
Nowlan, C., et al. (2018), Nitrogen dioxide and formaldehyde measurements from the GEOstationary Coastal and Air Pollution Events (GEO-CAPE) Airborne Simulator over Houston, Texas, Atmos. Meas. Tech., 11, 5941-5964, doi:10.5194/amt-11-5941-2018.
-
Sun, K., et al. (2018), Reevaluating the Use of O2 a1 Δg Band in Spaceborne Remote Sensing of Greenhouse Gases, Geophys. Res. Lett., 45, 5779-5787, doi:10.1029/2018GL077823.
-
Bak, J., et al. (2017), Characterization and correction of OMPS nadir mapper measurements for ozone profile retrievals, Atmos. Meas. Tech., 10, 4373-4388, doi:10.5194/amt-10-4373-2017.
-
Huang, G., et al. (2017), Validation of 10-year SAO OMI Ozone Profile (PROFOZ) product using ozonesonde observations, Atmos. Meas. Tech., 10, 2455-2475, doi:10.5194/amt-10-2455-2017.
-
Zhu, L., et al. (2017), Formaldehyde (HCHO) As a Hazardous Air Pollutant: Mapping Surface Air Concentrations from Satellite and Inferring Cancer Risks in the United States, Environ. Sci. Technol., 51, 5650-5657, doi:10.1021/acs.est.7b01356.
-
Zoogman, P., et al. (2017), Tropospheric emissions: Monitoring of pollution (TEMPO), J. Quant. Spectrosc. Radiat. Transfer, 186, 17-39, doi:10.1016/j.jqsrt.2016.05.008.
-
Abad, G.G., et al. (2015), Updated Smithsonian Astrophysical Observatory Ozone Monitoring Instrument (SAO OMI) formaldehyde retrieval, Atmos. Meas. Tech., 8, 19-32, doi:10.5194/amt-8-19-2015.
-
Bak, J., et al. (2015), Validation of OMI total ozone retrievals from the SAO ozone profile algorithm and three operational algorithms with Brewer measurements, Atmos. Chem. Phys., 15, 667-683, doi:10.5194/acp-15-667-2015.
-
Liu, C., et al. (2015), Characterization and verification of ACAM slit functions for trace-gas retrievals during the 2011 DISCOVER-AQ flight campaign, Atmos. Meas. Tech., 8, 751-759, doi:10.5194/amt-8-751-2015.
-
Hache, E., et al. (2014), The added value of a visible channel to a geostationary thermal infrared instrument to monitor ozone for air quality, Atmos. Meas. Tech., 7, 2185-2201, doi:10.5194/amt-7-2185-2014.
-
Marais, E.A., et al. (2014), Anthropogenic emissions in Nigeria and implications for atmospheric ozone pollution: A view from space, Atmos. Environ., 99, 32-40, doi:10.1016/j.atmosenv.2014.09.055.
-
Marais, E.A., et al. (2014), Improved model of isoprene emissions in Africa using Ozone Monitoring Instrument (OMI) satellite observations of formaldehyde: implications for oxidants and particulate matter, Atmos. Chem. Phys., 14, 7693-7703, doi:10.5194/acp-14-7693-2014.
-
Miller, C.C., et al. (2014), Glyoxal retrieval from the Ozone Monitoring Instrument, Atmos. Meas. Tech., 7, 3891-3907, doi:10.5194/amt-7-3891-2014.
-
Wang, H., et al. (2014), Water vapor retrieval from OMI visible spectra, Atmos. Meas. Tech., 7, 1901-1913, doi:10.5194/amt-7-1901-2014.
-
Wang, J., et al. (2014), A numerical testbed for remote sensing of aerosols, and its demonstration for evaluating retrieval synergy from a geostationary satellite constellation of GEO-CAPE and GOES-R, J. Quant. Spectrosc. Radiat. Transfer, 146, 510-528, doi:10.1016/j.jqsrt.2014.03.020.
-
Zhu, L., et al. (2014), Anthropogenic emissions of highly reactive volatile organic compounds in eastern Texas inferred from oversampling of satellite (OMI) measurements of HCHO columns, Environ. Res. Lett., 9, 114004, doi:10.1088/1748-9326/9/11/114004.
-
Zoogman, P., et al. (2014), Monitoring high-ozone events in the US Intermountain West using TEMPO geostationary satellite observations, Atmos. Chem. Phys., 14, 6261-6271, doi:10.5194/acp-14-6261-2014.
-
Zoogman, P., et al. (2014), Improved monitoring of surface ozone by joint assimilation of geostationary satellite observations of ozone and CO, Atmos. Environ., 84, 254-261, doi:10.1016/j.atmosenv.2013.11.048.
-
Bak, J., et al. (2013), Evaluation of ozone profile and tropospheric ozone retrievals from GEMS and OMI spectra, Atmos. Meas. Tech., 6, 239-249, doi:10.5194/amt-6-239-2013.
-
Bak, J., et al. (2013), Improvement of OMI ozone profile retrievals in the upper troposphere and lower stratosphere by the use of a tropopause-based ozone profile climatology, Atmos. Meas. Tech., 6, 2239-2254, doi:10.5194/amt-6-2239-2013.
-
Barkley, M.P., et al. (2013), Top-down isoprene emissions over tropical South America inferred from SCIAMACHY and OMI formaldehyde columns, J. Geophys. Res., 118, 6849-6868, doi:10.1002/jgrd.50552.
-
Cuesta, J., et al. (2013), Satellite observation of lowermost tropospheric ozone by multispectral synergism of IASI thermal infrared and GOME-2 ultraviolet measurements over Europe, Atmos. Chem. Phys., 13, 9675-9693, doi:10.5194/acp-13-9675-2013.
-
Fioletov, V.E., et al. (2013), Application of OMI, SCIAMACHY, and GOME-2 satellite SO2 retrievals for detection of large emission sources, J. Geophys. Res., 118, 11399-11418, doi:10.1002/jgrd.50826.
-
Kim, P.S., et al. (2013), Global ozone–CO correlations from OMI and AIRS: constraints on tropospheric ozone sources, Atmos. Chem. Phys., 13, 9321-9335, doi:10.5194/acp-13-9321-2013.
-
Liu, C., et al. (2013), The impact of using different ozone cross sections on ozone profile retrievals from OMI UV measurements, J. Quant. Spectrosc. Radiat. Transfer, 130, 365-372, doi:10.1016/j.jqsrt.2013.06.006.
-
Liu, C., et al. (2013), Dynamical and Chemical Features of a Cutoff Low over Northeast China in July 2007: Results from Satellite Measurements and Reanalysis, Advances In Atmospheric Sciences, 30, 525-540, doi:10.1007/s00376-012-2086-8.
-
Parrella, J.P., et al. (2013), New retrieval of BrO from SCIAMACHY limb: an estimate of the stratospheric bromine loading during April 2008, Atmos. Meas. Tech., 6, 2549-2561, doi:10.5194/amt-6-2549-2013.
-
Rothman, L.S., et al. (2013), The HITRAN2012 molecular spectroscopic database, J. Quant. Spectrosc. Radiat. Transfer, 130, 4-50, doi:10.1016/j.jqsrt.2013.07.002.
-
Wang, L., et al. (2013), Estimating the influence of lightning on upper tropospheric ozone using NLDN lightning data and CMAQ model, Atmos. Environ., 67, 219-228, doi:10.1016/j.atmosenv.2012.11.001.
-
ahoz, W.A.L., et al. (2012), Monitoring Air Quality From Space: The Case for the Geostationary Platform, Bull. Am. Meteorol. Soc., 221-233.
-
Barkley, M.P., et al. (2012), Assessing sources of uncertainty in formaldehyde air mass factors over tropical South America: Implications for top-down isoprene emission estimates, J. Geophys. Res., 117, D13304, doi:10.1029/2011JD016827.
-
Cai, Z., et al. (2012), Characterization and correction of Global Ozone Monitoring Experiment 2 ultraviolet measurements and application to ozone profile retrievals, J. Geophys. Res., 117, D07305, doi:10.1029/2011JD017096.
-
Choi, S., et al. (2012), Analysis of satellite-derived Arctic tropospheric BrO columns in conjunction with aircraft measurements during ARCTAS and ARCPAC, Atmos. Chem. Phys., 12, 1255-1285, doi:10.5194/acp-12-1255-2012.
-
Fishman, J., et al. (2012), The United States’ next generation of atmospheric composition and coastal ecosystem measurements NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission, Bull. Amer. Meteor. Soc., 93, 1547-1566.
-
Fishman, J., et al. (2012), The United States’ Next Generation Of Atmospheric Composition And Coastal Ecosystem Measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission, Bull. Am. Meteorol. Soc., 1547-1566.
-
Fortems-Cheiney, A., et al. (2012), The formaldehyde budget as seen by a global-scale multi-constraint and multi-species inversion system, Atmos. Chem. Phys., 12, 6699-6721, doi:10.5194/acp-12-6699-2012.
-
Koo, J.-H., et al. (2012), Characteristics of tropospheric ozone depletion events in the Arctic spring: analysis of the ARCTAS, ARCPAC, and ARCIONS measurements and satellite BrO observations, Atmos. Chem. Phys., 12, 9909-9922, doi:10.5194/acp-12-9909-2012.
-
Liao, J., et al. (2012), Characterization of soluble bromide measurements and a case study of BrO observations during ARCTAS, Atmos. Chem. Phys., 12, 1327-1338, doi:10.5194/acp-12-1327-2012.
-
Marais, E.A., et al. (2012), Isoprene emissions in Africa inferred from OMI observations of formaldehyde columns, Atmos. Chem. Phys., 12, 6219-6235, doi:10.5194/acp-12-6219-2012.
-
Nakatani, A., et al. (2012), Enhanced Mid-Latitude Tropospheric Column Ozone over East Asia: Coupled Effects of Stratospheric Ozone Intrusion and Anthropogenic Sources, Journal of the Meteorological Society of Japan, 90, 207-222, doi:10.2151/jmsj.2012-204.
-
Tilmes, S., et al. (2012), Impact of very short-lived halogens on stratospheric ozone abundance and UV radiation in a geo-engineered atmosphere, Atmos. Chem. Phys., 12, 10945-10955, doi:10.5194/acp-12-10945-2012.
-
Barkley, M.P., et al. (2011), Can a “state of the art” chemistry transport model simulate Amazonian tropospheric chemistry?, J. Geophys. Res., 116, D16302, doi:10.1029/2011JD015893.
-
Boeke, N.L., et al. (2011), Formaldehyde columns from the Ozone Monitoring Instrument: Urban versus background levels and evaluation using aircraft data and a global model, J. Geophys. Res., 116, D05303, doi:10.1029/2010JD014870.
-
Claeyman, M., et al. (2011), A geostationary thermal infrared sensor to monitor the lowermost troposphere: O3 and CO retrieval studies, Atmos. Meas. Tech., 4, 297-317, doi:10.5194/amt-4-297-2011.
-
Lamsal, L.N., et al. (2011), Application of satellite observations for timely updates to global anthropogenic NOx emission inventories, Geophys. Res. Lett., 38, L05810, doi:10.1029/2010GL046476.
-
Natraj, V., et al. (2011), Multi-spectral sensitivity studies for the retrieval of tropospheric and lowermost tropospheric ozone from simulated clear-sky GEO-CAPE measurements, Atmos. Environ., 45, 7151-7165, doi:10.1016/j.atmosenv.2011.09.014.
-
Nowlan, C.R., et al. (2011), Retrievals of sulfur dioxide from the Global Ozone Monitoring Experiment 2 (GOME‐2) using an optimal estimation approach: Algorithm and initial validation, J. Geophys. Res., 116, D18301, doi:10.1029/2011JD015808.
-
Pyle, J.A., et al. (2011), The impact of local surface changes in Borneo on atmospheric composition at wider spatial scales: coastal processes, land-use change and air quality, Downloaded from rstb.royalsocietypublishing.org on, 2011, doi:10.1098/rstb.2011.0060.
-
Sellitto, P., et al. (2011), Tropospheric ozone column retrieval at northern mid-latitudes from the Ozone Monitoring Instrument by means of a neural network algorithm, Atmos. Meas. Tech., 4, 2375-2388, doi:10.5194/amt-4-2375-2011.
-
Veefkind, J.P., et al. (2011), Global satellite analysis of the relation between aerosols and short-lived trace gases, Atmos. Chem. Phys., 11, 1255-1267, doi:10.5194/acp-11-1255-2011.
-
Wang, L., et al. (2011), Evaluating AURA/OMI ozone profiles using ozonesonde data and EPA surface measurements for August 2006, Atmos. Environ., 45, 5523-5530, doi:10.1016/j.atmosenv.2011.06.012.
-
Witte, J.C., et al. (2011), The unique OMI HCHO/NO2 feature during the 2008 Beijing Olympics: Implications for ozone production sensitivity, Atmos. Environ., 45, 3103-3111, doi:10.1016/j.atmosenv.2011.03.015.
-
Zoogman, P., et al. (2011), Ozone air quality measurement requirements for a geostationary satellite mission, Atmos. Environ., 45, 7143-7150, doi:10.1016/j.atmosenv.2011.05.058.
-
Curci, G., et al. (2010), Estimating European volatile organic compound emissions using satellite observations of formaldehyde from the Ozone Monitoring Instrument, Atmos. Chem. Phys., 10, 11501-11517, doi:10.5194/acp-10-11501-2010.
-
Liu, C., et al. (2010), Dynamic formation of extreme ozone minimum events over the Tibetan Plateau during northern winters 1987–2001, J. Geophys. Res., 115, D18311, doi:10.1029/2009JD013130.
-
Liu, X., et al. (2010), Ozone profile retrievals from the Ozone Monitoring Instrument, Atmos. Chem. Phys., 10, 2521-2537, doi:10.5194/acp-10-2521-2010.
-
Liu, X., et al. (2010), Validation of Ozone Monitoring Instrument (OMI) ozone profiles and stratospheric ozone columns with Microwave Limb Sounder (MLS) measurements, Atmos. Chem. Phys., 10, 2539-2549, doi:10.5194/acp-10-2539-2010.
-
Salawitch, R., et al. (2010), A new interpretation of total column BrO during Arctic spring, Geophys. Res. Lett., 37, L21805, doi:10.1029/2010GL043798.
-
Zhang, L., et al. (2010), Intercomparison methods for satellite measurements of atmospheric composition: application to tropospheric ozone from TES and OMI, Atmos. Chem. Phys., 10, 4725-4739, doi:10.5194/acp-10-4725-2010.
-
Cai, Z., et al. (2009), Validation of GOME ozone profiles and tropospheric column ozone with ozone sonde over China, J. Appl. Meteor., 20, 337-345.
-
Jones, N.B., et al. (2009), Long-term tropospheric formaldehyde concentrations deduced from ground-based fourier transform solar infrared measurements, Atmos. Chem. Phys., 9, 7131-7142, doi:10.5194/acp-9-7131-2009.
-
Liu, Y., et al. (2009), Tibetan middle tropospheric ozone minimum in June discovered from GOME observations, Geophys. Res. Lett., 36, L05814, doi:10.1029/2008GL037056.
-
Pittman, J.V., et al. (2009), Evaluation of AIRS, IASI, and OMI ozone profile retrievals in the extratropical tropopause region using in situ aircraft measurements, J. Geophys. Res., 114, D24109, doi:10.1029/2009JD012493.
-
Rothman, L.S., et al. (2009), The HITRAN 2008 molecular spectroscopic database, J. Quant. Spectrosc. Radiat. Transfer, 110, 533-572, doi:10.1016/j.jqsrt.2009.02.013.
-
Barkley, M.P., et al. (2008), Net ecosystem fluxes of isoprene over tropical South America inferred from Global Ozone Monitoring Experiment (GOME) observations of HCHO columns, J. Geophys. Res., 113, D20304, doi:10.1029/2008JD009863.
-
Choi, Y., et al. (2008), Springtime transitions of NO2, CO, and O3 over North America: Model evaluation and analysis, J. Geophys. Res., 113, D20311, doi:10.1029/2007JD009632.
-
Drury, E., et al. (2008), Improved algorithm for MODIS satellite retrievals of aerosol optical depths over western North America, J. Geophys. Res., 113, D16204, doi:10.1029/2007JD009573.
-
Fishman, J., et al. (2008), Remote Sensing Of Tropospheric Pollution From Space, Bull. Am. Meteorol. Soc., 805-821.
-
Hayashida, S., et al. (2008), Spatiotemporal Variation in Tropospheric Column Ozone over East Asia Observed by GOME and Ozonesondes, Sola, 4, 120, doi:10.2151/sola.2008.
-
Jacquinet-Husson, N., et al. (2008), The GEISA spectroscopic database: Current and future archive for Earth and planetary atmosphere studies, J. Quant. Spectrosc. Radiat. Transfer, 109, 1043-1059, doi:10.1016/j.jqsrt.2007.12.015.
-
Millet, D., et al. (2008), Spatial distribution of isoprene emissions from North America derived from formaldehyde column measurements by the OMI satellite sensor, J. Geophys. Res., 113, D02307, doi:10.1029/2007JD008950.
-
Cortesi, U., et al. (2007), Geophysical validation of MIPAS-ENVISAT operational ozone data, Atmos. Chem. Phys., 7, 4807-4867, doi:10.5194/acp-7-4807-2007.
-
Fu, T., et al. (2007), Space-based formaldehyde measurements as constraints on volatile organic compound emissions in east and south Asia and implications for ozone, J. Geophys. Res., 112, D06312, doi:10.1029/2006JD007853.
-
Höpfner, M., et al. (2007), Validation of MIPAS ClONO2 measurements, Atmos. Chem. Phys., 7, 257-281, doi:10.5194/acp-7-257-2007.
-
Liu, X., et al. (2007), Improved ozone profile retrievals from GOME data with degradation correction in reflectance, Atmos. Chem. Phys., 7, 1575-1583, doi:10.5194/acp-7-1575-2007.
-
Liu, X., et al. (2007), Impact of using different ozone cross sections on ozone profile retrievals from Global Ozone Monitoring Experiment (GOME) ultraviolet measurements, Atmos. Chem. Phys., 7, 3571-3578, doi:10.5194/acp-7-3571-2007.
-
Noguchi, K., et al. (2007), Validation and Comparison of Tropospheric Column Ozone Derived from GOME Measurements with Ozonesondes over Japan, Sola, 3, 44, doi:10.2151/sola.2007.
-
Saiz-Lopez, A., et al. (2007), First observations of iodine oxide from space, Geophys. Res. Lett., 34, L12812, doi:10.1029/2007GL030111.
-
Sauvage, B., et al. (2007), Remote sensed and in situ constraints on processes affecting tropical tropospheric ozone, Atmos. Chem. Phys., 7, 815-838, doi:10.5194/acp-7-815-2007.
-
Worden, J., et al. (2007), Improved tropospheric ozone profile retrievals using OMI and TES radiances, Geophys. Res. Lett., 34, L01809, doi:10.1029/2006GL027806.
-
Lichtenberg, G., et al. (2006), SCIAMACHY Level 1 data: calibration concept and in-flight calibration, Atmos. Chem. Phys., 6, 5347-5367, doi:10.5194/acp-6-5347-2006.
-
Liu, X., et al. (2006), First directly retrieved global distribution of tropospheric column ozone from GOME: Comparison with the GEOS-CHEM model, J. Geophys. Res., 111, D02308, doi:10.1029/2005JD006564.
-
Liu, X., et al. (2006), Tropospheric ozone profiles from a ground-based ultraviolet spectrometer: a new retrieval method, Appl. Opt., 45, 2352-2359.
-
Liu, X., et al. (2006), Intercomparison of GOME, ozonesonde, and SAGE II measurements of ozone: Demonstration of the need to homogenize available ozonesonde data sets, J. Geophys. Res., 111, D14305, doi:10.1029/2005JD006718.
-
Martin, R., et al. (2006), Evaluation of space-based constraints on global nitrogen oxide emissions with regional aircraft measurements over and downwind of eastern North America, J. Geophys. Res., 111, D15308, doi:10.1029/2005JD006680.
-
Palmer, P.I., et al. (2006), Quantifying the seasonal and interannual variability of North American isoprene emissions using satellite observations of the formaldehyde column, J. Geophys. Res., 111, D12315, doi:10.1029/2005JD006689.
-
Sioris, C.E., et al. (2006), Latitudinal and vertical distribution of bromine monoxide in the lower stratosphere from Scanning Imaging Absorption Spectrometer for Atmospheric Chartography limb scattering measurements, J. Geophys. Res., 111, D14301, doi:10.1029/2005JD006479.
-
Zeng, T., et al. (2006), Halogen-driven low-altitude O3 and hydrocarbon losses in spring at northern high latitudes, J. Geophys. Res., 111, D17313, doi:10.1029/2005JD006706.
-
Choi, Y., et al. (2005), Evidence of lightning NOx and convective transport of pollutants in satellite observations over North America, Geophys. Res. Lett., 32, L02805, doi:10.1029/2004GL021436.
-
Jaeglé, L., et al. (2005), Global partitioning of NOx sources using satellite observations: Relative roles of fossil fuel combustion, biomass burning and soil emissions, View Article Online / Journal Homepage / Table of Contents for this issue, 130, 407-423, doi:10.1039/b502128f.
-
Liu, X., et al. (2005), Ozone profile and tropospheric ozone retrievals from the Global Ozone Monitoring Experiment: Algorithm description and validation, J. Geophys. Res., 110, D20307, doi:10.1029/2005JD006240.
-
Liu, X., et al. (2005), Mapping tropospheric ozone profiles from an airborne ultraviolet–visible spectrometer, Appl. Opt., 44, 3312-3319.
-
Rothman, L.S., et al. (2005), The HITRAN 2004 molecular spectroscopic database, J. Quant. Spectrosc. Radiat. Transfer, 96, 139-204, doi:10.1016/j.jqsrt.2004.10.008.
-
Salawitch, R., et al. (2005), Sensitivity of ozone to bromine in the lower stratosphere, Geophys. Res. Lett., 32, L05811, doi:10.1029/2004GL021504.
-
Jaeglé, L., et al. (2004), Satellite mapping of rain-induced nitric oxide emissions from soils, J. Geophys. Res., 109, D21310, doi:10.1029/2004JD004787.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.