Multi-model ensemble simulations of tropospheric NO2 compared with GOME...
We present a systematic comparison of tropospheric NO2 from 17 global atmospheric chemistry models with three state-of-the-art retrievals from the Global Ozone Monitoring Experiment (GOME) for the year 2000. The models used constant anthropogenic emissions from IIASA/EDGAR3.2 and monthly emissions from biomass burning based on the 1997–2002 average carbon emissions from the Global Fire Emissions Database (GFED). Model output is analyzed at 10:30 local time, close to the overpass time of the ERS-2 satellite, and collocated with the measurements to account for sampling biases due to incomplete spatiotemporal coverage of the instrument. We assessed the importance of different contributions to the sampling bias: correlations on seasonal time scale give rise to a positive bias of 30–50% in the retrieved annual means over regions dominated by emissions from biomass burning. Over the industrial regions of the eastern United States, Europe and eastern China the retrieved annual means have a negative bias with significant contributions (between –25% and +10% of the NO2 column) resulting from correlations on time scales from a day to a month. We present global maps of modeled and retrieved annual mean NO2 column densities, together with the corresponding ensemble means and standard deviations for models and retrievals. The spatial correlation between