Tristan L'Ecuyer
Organization:
University of Wisconsin–Madison
Email:
Business Phone:
Work:
(608) 890-2107
Business Address:
Department of Atmospheric and Oceanic Sciences
1225 W. Dayton St.
Madison, WI 53706
United StatesWebsite:
First Author Publications:
- L'Ecuyer, T., and J. H. Jiang (2016), Touring the atmosphere feature aboard the A-Train, J. Chem. Phys., 21, doi:10.1063/1.3463626.
- L'Ecuyer, T., et al. (2015), The Observed State of the Energy Budget in the Early Twenty-First Century, J. Climate, 28, 8319-8346, doi:10.1175/JCLI-D-14-00556.1.
- L'Ecuyer, T., et al. (2009), Global observations of aerosol impacts on precipitation occurrence in warm maritime clouds, J. Geophys. Res., 114, D09211, doi:10.1029/2008JD011273.
- L'Ecuyer, T., et al. (2008), Impact of clouds on atmospheric heating based on the R04 CloudSat fluxes and heating rates data set, J. Geophys. Res., 113, D00A15, doi:10.1029/2008JD009951.
Co-Authored Publications:
- Redemann, J., et al. (2021), An overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) project: aerosol–cloud–radiation interactions in the southeast Atlantic basin, Atmos. Chem. Phys., 21, 1507-1563, doi:10.5194/acp-21-1507-2021.
- Sinclair, K., et al. (2021), Inference of Precipitation in Warm Stratiform Clouds Using Remotely Sensed Observations of the Cloud Top Droplet Size Distribution, Geophys. Res. Lett..
- Dzambo, A., et al. (2020), Joint Cloud Water Path and Rain Water Path Retrievals from ORACLES Observations, Atmos. Chem. Phys., doi:10.5194/acp-2020-849.
- Redemann, J., et al. (2020), An overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) project: aerosol-cloud-radiation interactions in the Southeast Atlantic basin, Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2020-449.
- Dzambo, A., et al. (2019), The Observed Structure and Precipitation Characteristics of Southeast Atlantic Stratocumulus from Airborne Radar during ORACLES 2016-17, J. Appl. Meteor. Climat., 58, 2197-2215, doi:https://doi.org/10.1175/JAMC-D-19-0032.1.
- Nelson, E. L., et al. (2019), On The Web An Interactive Online Educational Applet for Multiple Frequencies of Radar Observations, Bull. Am. Meteorol. Soc., 747-752, doi:10.1175/BAMS-D-18-0249.1.
- Chang, K., et al. (2017), Information content of visible and midinfrared radiances for retrieving tropical ice cloud properties, J. Geophys. Res., 122, 4944-4966, doi:10.1002/2016JD026357.
- Ham, S., et al. (2017), Cloud occurrences and cloud radiative effects (CREs) from CERES-CALIPSO-CloudSat-MODIS (CCCM) and CloudSat radar-lidar (RL) products, J. Geophys. Res., 122, doi:10.1002/2017JD026725.
- Twohy, C., et al. (2017), Saharan dust, convective lofting, aerosol enhancement zones, and potential impacts on ice nucleation in the tropical upper troposphere, J. Geophys. Res., 122, 8833-8851, doi:10.1002/2017JD026933.
- Christensen, M. W., et al. (2016), Datasets: Arctic Observation and Reanalysis Integrated System A New Data Product for Validation and Climate Study, Bull. Am. Meteorol. Soc., 907-915, doi:10.1175/BAMS-D-14-00273.1.
- Kulie, M. S., et al. (2016), A Shallow Cumuliform Snowfall Census Using Spaceborne Radar, J. Hydrometeorology, 17, 1261-1279, doi:10.1175/JHM-D-15-0123.1.
- Nelson, E. L., et al. (2016), Toward an Algorithm for Estimating Latent Heat Release in Warm Rain Systems, J. Atmos. Oceanic Technol., 33, 1309-1329, doi:10.1175/JTECH-D-15-0205.1.
- Wong, S., et al. (2016), Responses of Tropical Ocean Clouds and Precipitation to the Large-Scale Circulation: Atmospheric-Water-Budget-Related Phase Space and Dynamical Regimes, J. Climate, 29, 7127-7143, doi:10.1175/JCLI-D-15-0712.1.
- Johansson, E., et al. (2015), The vertical structure of cloud radiative heating over the Indian subcontinent during summer monsoon, Atmos. Chem. Phys., 15, 11557-11570, doi:10.5194/acp-15-11557-2015.
- Matus, A., et al. (2015), The Role of Clouds in Modulating Global Aerosol Direct Radiative Effects in Spaceborne Active Observations and the Community Earth System Model, J. Climate, 28, 2986-3003, doi:10.1175/JCLI-D-14-00426.1.
- Matus, A., et al. (2015), The Role of Clouds in Modulating Global Aerosol Direct Radiative Effects in Spaceborne Active Observations and the Community Earth System Model, J. Climate, 28, 2986-3003, doi:10.1175/JCLI-D-14-00426.1.
- Norin, L., et al. (2015), Intercomparison of snowfall estimates derived from the CloudSat Cloud Profiling Radar and the ground-based weather radar network over Sweden, Atmos. Meas. Tech., 8, 5009-5021, doi:10.5194/amt-8-5009-2015.
- Saleeby, S. M., et al. (2015), Impacts of Cloud Droplet–Nucleating Aerosols on Shallow Tropical Convection, J. Atmos. Sci., 72, 1369-1385, doi:10.1175/JAS-D-14-0153.1.
- Smalley, M., and T. L'Ecuyer (2015), A Global Assessment of the Spatial Distribution of Precipitation Occurrence, J. Appl. Meteor. Climat., 54, 2179-2197, doi:10.1175/JAMC-D-15-0019.1.
- Stephens, G. L., and T. L'Ecuyer (2015), Invited critical review The Earth's energy balance, Atmos. Res., 166, 195-203, doi:10.1016/j.atmosres.2015.06.024.
- Wood, N., et al. (2015), Microphysical Constraints on Millimeter-Wavelength Scattering Properties of Snow Particles, J. Appl. Meteor. Climat., 54, 909-931, doi:10.1175/JAMC-D-14-0137.1.
- Mann, J. A. L., et al. (2014), Aerosol impacts on drizzle properties in warm clouds from ARM Mobile Facility maritime and continental deployments, J. Geophys. Res., 119, 4136-4148, doi:10.1002/2013JD021339.
- Palerme, C., et al. (2014), How much snow falls on the Antarctic ice sheet?, The Cryosphere, 8, 1577-1587, doi:10.5194/tc-8-1577-2014.
- Protat, A., et al. (2014), Reconciling Ground-Based and Space-Based Estimates of the Frequency of Occurrence and Radiative Effect of Clouds around Darwin, Australia, J. Appl. Meteor. Climat., 53, 456-478, doi:10.1175/JAMC-D-13-072.1.
- Smalley, M., et al. (2014), A Comparison of Precipitation Occurrence from the NCEP Stage IV QPE Product and the CloudSat Cloud Profiling Radar, J. Hydrometeorology, 15, 444-458, doi:10.1175/JHM-D-13-048.1.
- Storer, R. L., S. van den Heever, and T. L'Ecuyer (2014), Observations of aerosol-induced convective invigoration in the tropical east Atlantic, J. Geophys. Res., 119, 3963-3975, doi:10.1002/2013JD020272.
- Wood, N., et al. (2014), RESEARCH ARTICLE Estimating snow microphysical properties using collocated multisensor observations, J. Geophys. Res., doi:10.1002/2013JD021303.
- Wood, K. P. N. B., et al. (2014), RESEARCH ARTICLE Estimating snow microphysical properties using collocated 10.1002/2013JD021303 multisensor observations, J. Geophys. Res..
- Haynes, J. M., et al. (2013), Radiative heating characteristics of Earth’s cloudy atmosphere from vertically resolved active sensors, Geophys. Res. Lett., 40, 624-630, doi:10.1002/grl.50145.
- Henderson, D. S., et al. (2013), A Multisensor Perspective on the Radiative Impacts of Clouds and Aerosols, J. Appl. Meteor. Climat., 52, 853-871, doi:10.1175/JAMC-D-12-025.1.
- Kay, J. E., and T. L'Ecuyer (2013), Observational constraints on Arctic Ocean clouds and radiative fluxes during the early 21st century, J. Geophys. Res., 118, 7219-7236, doi:10.1002/jgrd.50489.
- Li, J.-L. F., et al. (2013), Characterizing and understanding radiation budget biases in CMIP3/CMIP5 GCMs, contemporary GCM, and reanalysis, J. Geophys. Res., 118, 8166-8184, doi:10.1002/jgrd.50378.
- Su, H., et al. (2013), Diagnosis of regime-dependent cloud simulation errors in CMIP5 models using “A-Train” satellite observations and reanalysis data, J. Geophys. Res., 118, 2762-2780, doi:10.1029/2012JD018575.
- Wood, N., et al. (2013), Characterization of video disdrometer uncertainties and impacts on estimates of snowfall rate and radar reflectivity, Atmos. Meas. Tech., 6, 3635-3648, doi:10.5194/amt-6-3635-2013.
- Stephens, G. L., et al. (2012), An update on Earth’s energy balance in light of the latest global observations, Nature Geoscience, 5, 691-696, doi:10.1038/NGEO1580.
- Stephens, G., et al. (2012), The Global Character of the Flux of Downward Longwave Radiation, J. Climate, 25, 2329-2340, doi:10.1175/JCLI-D-11-00262.1.
- Wang, M., et al. (2012), Constraining cloud lifetime effects of aerosols using A-Train satellite observations, Geophys. Res. Lett., 39, L15709, doi:10.1029/2012GL052204.
- Lebsock, M., T. L'Ecuyer, and G. L. Stephens (2011), Detecting the Ratio of Rain and Cloud Water in Low-Latitude Shallow Marine Clouds, J. Appl. Meteor. Climat., 50, 419-432, doi:10.1175/2010JAMC2494.1.
- Lebsock, M., and T. L'Ecuyer (2011), The retrieval of warm rain from CloudSat, J. Geophys. Res., 116, D20209, doi:10.1029/2011JD016076.
- Waliser, D. E., et al. (2011), The impact of precipitating ice and snow on the radiation balance in global climate models, Geophys. Res. Lett., 38, L06802, doi:10.1029/2010GL046478.
- Berg, W., T. L'Ecuyer, and J. M. Haynes (2010), NOTES AND CORRESPONDENCE The Distribution of Rainfall over Oceans from Spaceborne Radars, J. Appl. Meteor. Climat., 49, 535, doi:10.1175/2009JAMC2330.1.
- Greenwald, T., et al. (2010), Evaluation of midlatitude clouds in a large‐scale high‐resolution simulation using CloudSat observations, J. Geophys. Res., 115, D19203, doi:10.1029/2009JD013552.
- Mitrescu, C., et al. (2010), CloudSat Precipitation Profiling Algorithm—Model Description, J. Appl. Meteor. Climat., 49, 991-1003, doi:10.1175/2009JAMC2181.1.
- Mitrescu, C., et al. (2010), CloudSat Precipitation Profiling Algorithm—Model Description, J. Appl. Meteor. Climat., 49, 991-1003, doi:10.1175/2009JAMC2181.1.
- Protat, A., et al. (2010), The Evaluation of CloudSat and CALIPSO Ice Microphysical Products Using Ground-Based Cloud Radar and Lidar Observations, J. Atmos. Oceanic Technol., 27, 793, doi:10.1175/2009JTECHA1397.1.
- Saleeby, S., et al. (2010), Impact of Cloud-Nucleating Aerosols in Cloud-Resolving Model Simulations of Warm-Rain Precipitation in the East China Sea, J. Atmos. Sci., 67, 3916-3930, doi:10.1175/2010JAS3528.1.
- Stephens, G. L., et al. (2010), Dreary state of precipitation in global models, J. Geophys. Res., 115, D24211, doi:10.1029/2010JD014532.
- Ellis, T. D., et al. (2009), How often does it rain over the global oceans? The perspective from CloudSat, Geophys. Res. Lett., 36, L03815, doi:10.1029/2008GL036728.
- Haynes, J., et al. (2009), Rainfall retrieval over the ocean with spaceborne W-band radar, J. Geophys. Res., 114, D00A22, doi:10.1029/2008JD009973.
- Battaglia, A., et al. (2008), Identifying multiple-scattering-affected profiles in CloudSat observations over the oceans, J. Geophys. Res., 113, D00A17, doi:10.1029/2008JD009960.
- Berg, W., T. L'Ecuyer, and S. van den Heever (2008), Evidence for the impact of aerosols on the onset and microphysical properties of rainfall from a combination of satellite observations and cloud-resolving model simulations, J. Geophys. Res., 113, D14S23, doi:10.1029/2007JD009649.
- Feldman, D., et al. (2008), Remote sensing of tropical tropopause layer radiation balance using A-train measurements, J. Geophys. Res., 113, D21113, doi:10.1029/2008JD010158.
- Kay, J. E., et al. (2008), The contribution of cloud and radiation anomalies to the 2007 Arctic sea ice extent minimum, Geophys. Res. Lett., 35, L08503, doi:10.1029/2008GL033451.
- Mitrescu, C., et al. (2008), Near-Real-Time Applications of CloudSat Data, J. Appl. Meteor. Climat., 47, 1982-1994, doi:10.1175/2007JAMC1794.1.
- Stephens, G., et al. (2008), CloudSat mission: Performance and early science after the first year of operation, J. Geophys. Res., 113, D00A18, doi:10.1029/2008JD009982.
- Cooper, S. J., et al. (2006), Objective Assessment of the Information Content of Visible and Infrared Radiance Measurements for Cloud Microphysical Property Retrievals over the Global Oceans. Part II: Ice Clouds, J. Appl. Meteor. Climat., 45, 42-62.