A Shallow Cumuliform Snowfall Census Using Spaceborne Radar

Kulie, M. S., L. Milani, N. B. Wood, S. A. Tushaus, R. Bennartz, and T. L'Ecuyer (2016), A Shallow Cumuliform Snowfall Census Using Spaceborne Radar, J. Hydrometeorology, 17, 1261-1279, doi:10.1175/JHM-D-15-0123.1.

The first observationally based near-global shallow cumuliform snowfall census is undertaken using multiyear CloudSat Cloud Profiling Radar observations. CloudSat snowfall observations and snowfall rate estimates from the CloudSat 2C-Snow Water Content and Snowfall Rate (2C-SNOW-PROFILE) product are partitioned between shallow cumuliform and nimbostratus cloud structures by utilizing coincident cloud category classifications from the CloudSat 2B-Cloud Scenario Classification (2B-CLDCLASS) product. Shallow cumuliform (nimbostratus) snowfall events comprise about 36% (59%) of snowfall events in the CloudSat snowfall dataset. The remaining 5% of snowfall events are distributed between other categories. Distinct oceanic versus continental trends exist between the two major snowfall categories, as shallow cumuliform snow-producing clouds occur predominantly over the oceans. Regional differences are also noted in the partitioned dataset, with over-ocean regions near Greenland, the far North Atlantic Ocean, the Barents Sea, the western Pacific Ocean, the southern Bering Sea, and the Southern Hemispheric pan-oceanic region containing distinct shallow snowfall occurrence maxima exceeding 60%. Certain Northern Hemispheric continental regions also experience frequent shallow cumuliform snowfall events (e.g., inland Russia), as well as some mountainous regions. CloudSat-generated snowfall rates are also partitioned between the two major snowfall categories to illustrate the importance of shallow snow-producing cloud structures to the average annual snowfall. While shallow cumuliform snowfall produces over 50% of the annual estimated surface snowfall flux regionally, about 18% (82%) of global snowfall is attributed to shallow (nimbostratus) snowfall. This foundational spaceborne snowfall study will be utilized for follow-on evaluative studies with independent model, reanalysis, and ground-based observational datasets to characterize respective dataset biases and to better quantify CloudSat snowfall detection and quantitative snowfall estimate uncertainties.

PDF of Publication: 
Download from publisher's website.