Taylor Shingler
Organization:
NASA Langley Research Center
First Author Publications:
- Shingler, T., et al. (2016), Airborne characterization of subsaturated aerosol hygroscopicity and dry refractive index from the surface to 6.5km during the SEAC4RS campaign, J. Geophys. Res., 121, 4188-4210, doi:10.1002/2015JD024498.
- Shingler, T., et al. (2016), Ambient observations of hygroscopic growth factor and f(RH) below 1: Case studies from surface and airborne measurements, J. Geophys. Res., 121, doi:10.1002/2016JD025471.
Co-Authored Publications:
- Crosbie, E., et al. (2024), Measurement report: Cloud and environmental properties associated with aggregated shallow marine cumulus and cumulus congestus, Atmos. Chem. Phys., doi:10.5194/acp-24-6123-2024.
- Dmitrovic, S., et al. (2024), High Spectral Resolution Lidar – generation 2 (HSRL-2) retrievals of ocean surface wind speed: methodology and evaluation, Atmos. Meas. Tech., 17, 3515-3532, doi:10.5194/amt-17-3515-2024.
- Gkatzelis, G., et al. (2024), Parameterizations of US wildfire and prescribed fire emission ratios and emission factors based on FIREX-AQ aircraft measurements, Atmos. Chem. Phys., doi:10.5194/acp-24-929-2024.
- Gkatzelis, G., et al. (2024), Parameterizations of US wildfire and prescribed fire emission ratios and emission factors based on FIREX-AQ aircraft measurements, Atmos. Chem. Phys., doi:10.5194/acp-24-929-2024.
- Li, X., et al. (2024), Process Modeling of Aerosol‐Cloud Interaction in Summertime Precipitating Shallow Cumulus Over the Western North Atlantic, J. Geophys. Res., 129, e2023JD039489, doi:10.1029/2023JD039489.
- Siu, L. W., et al. (2024), Retrievals of aerosol optical depth over the western North Atlantic Ocean during ACTIVATE, Atmos. Meas. Tech., 17, 2739-2759, doi:10.5194/amt-17-2739-2024.
- Xu, Y., et al. (2024), Boundary Layer Structures Over the Northwest Atlantic Derived From Airborne High Spectral Resolution Lidar and Dropsonde Measurements During the ACTIVATE Campaign, J. Geophys. Res., 129, e2023JD039878, doi:10.1029/2023JD039878.
- Corral, A., et al. (2023), Environmental Science: Atmospheres View Article Online PAPER View Journal Dimethylamine in cloud water: a case study over, The Author(s). Published by the Royal Society of Chemistry Environ. Sci.: Atmos, 10.1039/D2EA00117A, doi:10.1039/d2ea00117a.
- Ferrare, R., et al. (2023), Airborne HSRL-2 measurements of elevated aerosol depolarization associated with non-spherical sea salt, TYPE Original Research, doi:10.3389/frsen.2023.1143944.
- Li, X., et al. (2023), Large-Eddy Simulations of Marine Boundary Layer Clouds Associated with Cold-Air Outbreaks during the ACTIVATE Campaign. Part II: Aerosol–Meteorology–Cloud Interaction, J. Atmos. Sci., 80, 1025-1045, doi:10.1175/JAS-D-21-0324.1.
- Nied, J., et al. (2023), A cloud detection neural network for above-aircraft clouds using airborne cameras, Frontiers in Remote Sensing, 4, 10.3389/frsen.2023.1118745, doi:10.3389/frsen.2023.1118745.
- Pagonis, D., et al. (2023), Impact of Biomass Burning Organic Aerosol Volatility on Smoke Concentrations Downwind of Fires, Environ. Sci. Technol., 57, 17011-17021, doi:10.1021/acs.est.3c05017.
- Saide Peralta, et al. (2023), Understanding the Evolution of Smoke Mass Extinction Efficiency Using Field Campaign Measurements, Geophys. Res. Lett., 49, e2022GL099175, doi:10.1029/2022GL099175.
- Sorooshian, A., et al. (2023), Spatially coordinated airborne data and complementary products for aerosol, gas, cloud, and meteorological studies: the NASA ACTIVATE dataset, Earth Syst. Sci. Data, 15, 3419-3472, doi:10.5194/essd-15-3419-2023.
- Thapa, L., et al. (2023), Heat flux assumptions contribute to overestimation of wildfire smoke injection into the free troposphere, Nature, doi:10.1038/s43247-022-00563-x.
- Vömel, H. 1. ✉., et al. (2023), OPEN Dropsonde observations during Data Descriptor the Aerosol Cloud meTeorology Interactions oVer the western ATlantic Experiment, Nature, doi:10.1038/s41597-023-02647-5.
- Ye, X., et al. (2023), Assessing Vertical Allocation of Wildfire Smoke Emissions Using Observational Constraints From Airborne Lidar in the Western U.S., J. Geophys. Res..
- Chen, J., et al. (2022), Impact of Meteorological Factors on the Mesoscale Morphology of Cloud Streets during a Cold-Air Outbreak over the Western North Atlantic, J. Atmos. Sci., 79, 2863-2879, doi:10.1175/JAS-D-22-0034.1.
- Corral, A., et al. (2022), Cold Air Outbreaks Promote New Particle Formation Off the U.S. East Coast, Geophys. Res. Lett..
- Kacenelenbogen, M. S., et al. (2022), Identifying chemical aerosol signatures using optical suborbital observations: how much can optical properties tell us about aerosol composition?, Atmos. Chem. Phys., doi:10.5194/acp-22-3713-2022.
- Noyes, K. J., et al. (2022), Wildfire Smoke Particle Properties and Evolution, From Space-Based Multi-Angle Imaging II: The Williams Flats Fire during the FIREX-AQ Campaign, doi:10.3390/rs12223823.
- Peterson, D., et al. (2022), Measurements from inside a Thunderstorm Driven by Wildfire: The 2019 FIREX-AQ Field Experiment, Bull. Amer. Meteor. Soc., 103, E2140-E2167, doi:10.1175/BAMS-D-21-0049.1.
- Saide Peralta, et al. (2022), Understanding the Evolution of Smoke Mass Extinction Efficiency Using Field Campaign Measurements, Geophys. Res. Lett., 49, e2022GL099175, doi:10.1029/2022GL099175.
- Sanchez, K., et al. (2022), North Atlantic Ocean SST-gradient-driven variations in aerosol and cloud evolution along Lagrangian cold-air outbreak trajectories, Atmos. Chem. Phys., 22, 2795-2815, doi:10.5194/acp-22-2795-2022.
- Schlosser, J., et al. (2022), Polarimeter + Lidar–Derived Aerosol Particle Number Concentration, Front. Remote Sens., 3, 885332, doi:10.3389/frsen.2022.885332.
- Stockwell, C. E., et al. (2022), Airborne Emission Rate Measurements Validate Remote Sensing Observations and Emission Inventories of Western U.S. Wildfires, Environ. Sci. Technol., 56, 7564-7577, doi:10.1021/acs.est.1c07121.
- Xu, L., et al. (2022), Ozone chemistry in western U.S. wildfire plumes, Science Advances, 7, eabl3648, doi:10.1126/sciadv.abl3648.
- Xu, L., et al. (2022), Adv.7, eabl3648 (2021) 8 December 2021SCIENCE ADVANCES, Ozone chemistry in western U.S. wildfire plumes, Xu et al., Sci., 7, eabl3648, doi:10.1126/sciadv.abl3648.
- Mardi, A. H., et al. (2021), Biomass Burning Over the United States East Coast and Western North Atlantic Ocean: Implications for Clouds and Air Quality, J. Geophys. Res., 126, e2021JD034916, doi:10.1029/2021JD034916.
- Moore, R., et al. (2021), Sizing response of the Ultra-High Sensitivity Aerosol Spectrometer (UHSAS) and Laser Aerosol Spectrometer (LAS) to changes in submicron aerosol composition and refractive index, Atmos. Meas. Tech., 14, 4517-4542, doi:10.5194/amt-14-4517-2021.
- Sanchez, K., et al. (2021), Linking marine phytoplankton emissions, meteorological processes, and downwind particle properties with FLEXPART, Atmos. Chem. Phys., 21, 831-851, doi:10.5194/acp-21-831-2021.
- Seethala, C., et al. (2021), On Assessing ERA5 and MERRA2 Representations of Cold-Air Outbreaks Across the Gulf Stream, Geophys. Res. Lett..
- Wang, S., et al. (2021), Chemical Tomography in a Fresh Wildland Fire Plume: A Large Eddy Simulation (LES) Study, J. Geophys. Res..
- Wiggins, E. B., et al. (2021), Reconciling assumptions in bottom-up and top-down approaches for estimating aerosol emission rates from wildland fires using observations from FIREX-AQ, J. Geophys. Res., 126, e2021JD035692, doi:10.1029/2021JD035692.
- Ye, X., et al. (2021), Evaluation and intercomparison of wildfire smoke forecasts from multiple modeling systems for the 2019 Williams Flats fire, Atmos. Chem. Phys., 21, 14427-14469, doi:10.5194/acp-21-14427-2021.
- Ye, X., et al. (2021), Evaluation and intercomparison of wildfire smoke forecasts from multiple modeling systems for the 2019 Williams Flats fire, Atmos. Chem. Phys., doi:10.5194/acp-2021-223.
- Sorooshian, A., et al. (2020), Atmospheric Research Over the Western North Atlantic Ocean Region and North American East Coast: A Review of Past Work and Challenges Ahead, J. Geophys. Res., 125, e2019JD031626, doi:10.1029/2019JD031626.
- Aldhaif, A. M., et al. (2018), Characterization of the Real Part of Dry Aerosol Refractive Index Over North America From the Surface to 12 km, J. Geophys. Res., 123, doi:10.1029/2018JD028504.
- Brune, W. H., et al. (2018), Atmospheric oxidation in the presence of clouds during the Deep Convective Clouds and Chemistry (DC3) study, Atmos. Chem. Phys., 18, 14493-14510, doi:10.5194/acp-18-14493-2018.
- Ervens, B., et al. (2018), Is there an aerosol signature of chemical cloud processing?, Atmos. Chem. Phys., 18, 16099-16119, doi:10.5194/acp-18-16099-2018.
- Perring, A., et al. (2017), In situ measurements of water uptake by black carbon-containing aerosol in wildfire plumes, J. Geophys. Res., 122, 1086-1097, doi:10.1002/2016JD025688.
- Sorooshian, A., et al. (2017), Contrasting aerosol refractive index and hygroscopicity in the inflow and outflow of deep convective storms: Analysis of airborne data from DC3, J. Geophys. Res., 122, 4565-4577, doi:10.1002/2017JD026638.
- Hersey, S. P., et al. (2015), An overview of regional and local characteristics of aerosols in South Africa using satellite, ground, and modeling data, Atmos. Chem. Phys., 15, 4259-4278, doi:10.5194/acp-15-4259-2015.
- Crosbie, E., et al. (2014), A Multi-Year Aerosol Characterization for the Greater Tehran Area Using Satellite, Surface, and Modeling Data, Atmosphere, 5, 178-197, doi:10.3390/atmos5020178.