Robert J. D. Spurr
Organization:
RT Solutions, Inc.
Email:
Business Address:
Cambridge, MA 02138
United StatesFirst Author Publications:
- Spurr, R. J. D., et al. (2012), Linearized T-matrix and Mie scattering computations, J. Quant. Spectrosc. Radiat. Transfer, 113, 425-439, doi:10.1016/j.jqsrt.2011.11.014.
Co-Authored Publications:
- Zhang, J., et al. (2023), Sensitivity studies of nighttime top-of-atmosphere radiances from artificial light sources using a 3-D radiative transfer model for nighttime aerosol retrievals, Atmos. Meas. Tech., 16, 2531-2546, doi:10.5194/amt-16-2531-2023.
- Bak, J., et al. (2021), Radiative transfer acceleration based on the principal component analysis and lookup table of corrections: optimization and application to UV ozone profile retrievals, Atmos. Meas. Tech., 14, 2659-2672, doi:10.5194/amt-14-2659-2021.
- Zhang, J., et al. (2021), Development of an Ozone Monitoring Instrument (OMI) aerosol index (AI) data assimilation scheme for aerosol modeling over bright surfaces – a step toward direct radiance assimilation in the UV spectrum, Geosci. Model. Dev., 14, 27-42, doi:10.5194/gmd-14-27-2021.
- Wang, J., et al. (2020), Development of a nighttime shortwave radiative transfer model for remote T sensing of nocturnal aerosols and fires from VIIRS, Remote Sensing of Environment, 241, 111727, doi:10.1016/j.rse.2020.111727.
- Vasilkov, A. P., et al. (2018), A cloud algorithm based on the O2-O2 477 nm absorption band featuring an advanced spectral fitting method and the use of surface geometry-dependent Lambertian-equivalent reflectivity, Atmos. Meas. Tech., 11, 4093-4107, doi:10.5194/amt-11-4093-2018.
- Lamsal, L. N., et al. (2017), High-resolution NO2 observations from the Airborne Compact Atmospheric Mapper: Retrieval and validation, J. Geophys. Res., 122, 1953-1970, doi:10.1002/2016JD025483.
- Li, C., et al. (2017), New-generation NASA Aura Ozone Monitoring Instrument (OMI) volcanic SO2 dataset: algorithm description, initial results, and continuation with the Suomi-NPP Ozone Mapping and Profiler Suite (OMPS), Atmos. Meas. Tech., 10, 445-458, doi:10.5194/amt-10-445-2017.
- Zoogman, P., et al. (2017), Tropospheric emissions: Monitoring of pollution (TEMPO), J. Quant. Spectrosc. Radiat. Transfer, 186, 17-39, doi:10.1016/j.jqsrt.2016.05.008.
- Hammer, M. S., et al. (2016), Interpreting the ultraviolet aerosol index observed with the OMI satellite instrument to understand absorption by organic aerosols: implications for atmospheric oxidation and direct radiative effects, Atmos. Chem. Phys., 16, 2507-2523, doi:10.5194/acp-16-2507-2016.
- Jethva, H., et al. (2016), Validating MODIS above-cloud aerosol optical depth retrieved from “color ratio” algorithm using direct measurements made by NASA’s airborne AATS and 4STAR sensors, Atmos. Meas. Tech., 9, 5053-5062, doi:10.5194/amt-9-5053-2016.
- Buchard, V., et al. (2015), Using the OMI aerosol index and absorption aerosol optical depth to evaluate the NASA MERRA Aerosol Reanalysis, Atmos. Chem. Phys., 15, 5743-5760, doi:10.5194/acp-15-5743-2015.
- Xu, X., et al. (2015), Retrieval of aerosol microphysical properties from AERONET photopolarimetric measurements: 2. A new research algorithm and case demonstration, J. Geophys. Res., 120, 7079-7098, doi:10.1002/2015JD023113.
- Hache, E., et al. (2014), The added value of a visible channel to a geostationary thermal infrared instrument to monitor ozone for air quality, Atmos. Meas. Tech., 7, 2185-2201, doi:10.5194/amt-7-2185-2014.
- Wang, J., et al. (2014), A numerical testbed for remote sensing of aerosols, and its demonstration for evaluating retrieval synergy from a geostationary satellite constellation of GEO-CAPE and GOES-R, J. Quant. Spectrosc. Radiat. Transfer, 146, 510-528, doi:10.1016/j.jqsrt.2014.03.020.
- Cuesta, J., et al. (2013), Satellite observation of lowermost tropospheric ozone by multispectral synergism of IASI thermal infrared and GOME-2 ultraviolet measurements over Europe, Atmos. Chem. Phys., 13, 9675-9693, doi:10.5194/acp-13-9675-2013.
- van Donkelaar, A., et al. (2013), Optimal estimation for global ground-level fine particulate matter concentrations, J. Geophys. Res., 118, 5621-5636, doi:10.1002/jgrd.50479.
- Vasilkov, A. P., J. Joiner, and R. J. D. Spurr (2013), Note on rotational-Raman scattering in the O2 A- and B-bands, Atmos. Meas. Tech., 6, 981-990, doi:10.5194/amt-6-981-2013.
- Joiner, J., et al. (2012), Fast simulators for satellite cloud optical centroid pressure retrievals; evaluation of OMI cloud retrievals, Atmos. Meas. Tech., 5, 529-545, doi:10.5194/amt-5-529-2012.
- Natraj, V., et al. (2011), Multi-spectral sensitivity studies for the retrieval of tropospheric and lowermost tropospheric ozone from simulated clear-sky GEO-CAPE measurements, Atmos. Environ., 45, 7151-7165, doi:10.1016/j.atmosenv.2011.09.014.
- Drury, E., et al. (2010), Synthesis of satellite (MODIS), aircraft (ICARTT), and surface (IMPROVE, EPA‐AQS, AERONET) aerosol observations over eastern North America to improve MODIS aerosol retrievals and constrain surface aerosol concentrations and sources, J. Geophys. Res., 115, D14204, doi:10.1029/2009JD012629.
- Liu, X., et al. (2010), Validation of Ozone Monitoring Instrument (OMI) ozone profiles and stratospheric ozone columns with Microwave Limb Sounder (MLS) measurements, Atmos. Chem. Phys., 10, 2539-2549, doi:10.5194/acp-10-2539-2010.
- Liu, X., et al. (2010), Ozone profile retrievals from the Ozone Monitoring Instrument, Atmos. Chem. Phys., 10, 2521-2537, doi:10.5194/acp-10-2521-2010.
- Vasilkov, A. P., et al. (2010), What do satellite backscatter ultraviolet and visible spectrometers see over snow and ice? A study of clouds and ozone using the A-train, Atmos. Meas. Tech., 3, 619-629, doi:10.5194/amt-3-619-2010.
- Wang, J., et al. (2010), Improved algorithm for MODIS satellite retrievals of aerosol optical thickness over land in dusty atmosphere: Implications for air quality monitoring in China, Remote Sensing of Environment, 114, 2575-2583, doi:10.1016/j.rse.2010.05.034.
- Yang, K., et al. (2010), Direct retrieval of sulfur dioxide amount and altitude from spaceborne hyperspectral UV measurements: Theory and application, J. Geophys. Res., 115, D00L09, doi:10.1029/2010JD013982.
- Vasilkov, A. P., et al. (2009), Impact of tropospheric nitrogen dioxide on the regional radiation budget, Atmos. Chem. Phys., 9, 6389-6400, doi:10.5194/acp-9-6389-2009.
- Drury, E., et al. (2008), Improved algorithm for MODIS satellite retrievals of aerosol optical depths over western North America, J. Geophys. Res., 113, D16204, doi:10.1029/2007JD009573.
- Vasilkov, A. P., et al. (2008), Evaluation of the OMI cloud pressures derived from rotational Raman scattering by comparisons with other satellite data and radiative transfer simulations, J. Geophys. Res., 113, D15S19, doi:10.1029/2007JD008689.
- Liu, X., et al. (2006), First directly retrieved global distribution of tropospheric column ozone from GOME: Comparison with the GEOS-CHEM model, J. Geophys. Res., 111, D02308, doi:10.1029/2005JD006564.
- Liu, X., et al. (2005), Ozone profile and tropospheric ozone retrievals from the Global Ozone Monitoring Experiment: Algorithm description and validation, J. Geophys. Res., 110, D20307, doi:10.1029/2005JD006240.