Paul Lawson
Organization:
Stratton Park Engineering Company, Inc.
Email:
Business Phone:
Work:
(303) 449-1105
Mobile:
(303) 579-0115
Fax:
(303) 449-0132
Business Address:
SPEC Incorporated
3022 Sterling Circle
Suite 200
Boulder, CO 80301
United StatesWebsite:
First Author Publications:
- Lawson, P., et al. (2022), Coalescence and Secondary Ice Development in Cumulus Congestus Clouds, J. Atmos. Sci., 79, 953-972, doi:10.1175/JAS-D-21-0188.1.
- Lawson, P., et al. (2017), Aircraft Observations of Cumulus Microphysics Ranging from the Tropics to Midlatitudes: Implications for a ‘‘New’’ Secondary Ice Process, J. Atmos. Sci., 74, 2899-2920, doi:10.1175/JAS-D-17-0033.1.
- Lawson, P., S. Woods, and H. Morrison (2015), The Microphysics of Ice and Precipitation Development in Tropical Cumulus Clouds, J. Atmos. Sci., 72, 2429-2445, doi:10.1175/JAS-D-14-0274.1.
- Lawson, P., et al. (2010), Microphysical and radiative properties of tropical clouds investigated in TC4 and NAMMA, J. Geophys. Res., 115, D00J08, doi:10.1029/2009JD013017.
- Lawson, P., et al. (2008), Microphysical Properties of subvisible cirrus, Atmos. Chem. Phys., 8, 1609-1620.
- Lawson, P., et al. (2008), Aircraft measurements of microphysical properties of subvisible cirrus in the tropical tropopause layer, Atmos. Chem. Phys., 8, 1609-1620.
- Lawson, P., et al. (2006), The 2DS (Stereo) Probe: Design and preliminary tests of a new airborne, high speed, high-resolution particle imaging probe, J. Atmos. Oceanic Technol., 23, 1462-1477.
- Lawson, P., et al. (2006), In Situ observations of the microphysical properties of wave, cirrus and anvil clouds. Part II: Cirrus Clouds, J. Atmos. Sci., 63, 3186-3203.
- Lawson, P., et al. (2006), Microphysical and optical properties of ice crystals at South Pole Station, J. Appl. Meteor., 45, 1505-1524.
- Lawson, P., et al. (2001), An overview of microphysical properties of Arctic clouds observed in May and July during FIRE.ACE, J. Geophys. Res., 106, 989-15.
- Lawson, P., et al. (1998), Shapes, sizes and light scattering properties of ice crystals in cirrus and a persistent contrail during SUCCESS, Geophys. Res. Lett., 25, 1331-1334.
Co-Authored Publications:
- Korolev, A., et al. (2020), A new look at the environmental conditions favorable to secondary ice production, Atmos. Chem. Phys., 20, 1391-1429, doi:10.5194/acp-20-1391-2020.
- Woods, S., et al. (2018), Microphysical Properties of Tropical Tropopause Layer Cirrus, J. Geophys. Res., 123, doi:.org/.
- Heath, N. K., et al. (2017), WRF nested large-eddy simulations of deep convection during SEAC4RS, J. Geophys. Res., 122, 3953-3974, doi:10.1002/2016JD025465.
- Jensen, E., et al. (2017), The NASA Airborne Tropical TRopopause EXperiment (ATTREX): High-altitude aircraft measurements in the tropical western Pacific, Bull. Am. Meteorol. Soc., 12/2015, 129-144, doi:10.1175/BAMS-D-14-00263.1.
- Thornberry, T., et al. (2017), Ice water content-extinction relationships and effective diameter for TTL cirrus derived from in situ measurements during ATTREX 2014, J. Geophys. Res., 122, 4494-4507, doi:10.1002/2016JD025948.
- Corr, C. A., et al. (2016), Observational evidence for the convective transport of dust over the Central United States, J. Geophys. Res., 121, doi:10.1002/2015JD023789.
- Fridlind, A. M., et al. (2016), Derivation of physical and optical properties of mid-latitude cirrus ice crystals for a size-resolved cloud microphysics model, Atmos. Chem. Phys., 16, 7251-7283, doi:10.5194/acp-16-7251-2016.
- Jensen, E., et al. (2016), High-frequency gravity waves and homogeneous ice nucleation in tropical tropopause layer cirrus, Geophys. Res. Lett., 43, 6629-6635, doi:10.1002/2016GL069426.
- Kim, J., et al. (2016), Ubiquitous influence of waves on tropical high cirrus clouds, Geophys. Res. Lett., 43, 5895-5901, doi:10.1002/2016GL069293.
- Deng, M., et al. (2013), Evaluation of Several A-Train Ice Cloud Retrieval Products with In Situ Measurements Collected during the SPARTICUS Campaign, J. Appl. Meteor. Climat., 52, 1014-1030, doi:10.1175/JAMC-D-12-054.1.
- Jensen, E., et al. (2013), Ice nucleation and dehydration in the Tropical Tropopause Layer, Proc. Natl. Acad. Sci., doi:10.1073/pnas.1217104110.
- Jensen, E., et al. (2013), Physical processes controlling ice concentrations in synoptically-forced, J. Geophys. Res., 118, 5348-5360, doi:10.1002/jgrd.50421.
- Baumgardner, D., et al. (2012), In Situ, Airborne Instrumentation: Addressing and Solving Measurement Problems in Ice Clouds, Bull. Am. Meteorol. Soc., ES29-ES34.
- Evans, K. F., et al. (2012), Ice hydrometeor profile retrieval algorithm for high-frequency microwave radiometers: application to the CoSSIR instrument during TC4, Atmos. Meas. Tech., 5, 2277-2306, doi:10.5194/amt-5-2277-2012.
- Liu, X., et al. (2012), Sensitivity studies of dust ice nuclei effect on cirrus clouds with the Community Atmosphere Model CAM5, Atmos. Chem. Phys., 12, 12061-12079, doi:10.5194/acp-12-12061-2012.
- Avery, M., et al. (2010), Convective distribution of tropospheric ozone and tracers in the Central American ITCZ region: Evidence from observations during TC4, J. Geophys. Res., 115, D00J21, doi:10.1029/2009JD013450.
- Davis, S., et al. (2010), In situ and lidar observations of tropopause subvisible cirrus clouds during TC4, J. Geophys. Res., 115, D00J17, doi:10.1029/2009JD013093.
- Froyd, K., et al. (2010), Aerosols that form subvisible cirrus at the tropical tropopause, Atmos. Chem. Phys., 10, 209-218, doi:10.5194/acp-10-209-2010.
- Jensen, E., et al. (2010), Ice nucleation and cloud microphysical properties in tropical tropopause layer cirrus, Atmos. Chem. Phys., 10, 1369-1384, doi:10.5194/acp-10-1369-2010.
- Baker, B., et al. (2009), Drop Size Distributions and the Lack of Small Drops in RICO Rain Shafts, J. Appl. Meteor. Climat., 48, 616-623.
- Jensen, E., et al. (2009), On the importance of small ice crystals in tropical anvil cirrus, Atmos. Chem. Phys. Discuss., 9, 5321-5370.
- Jensen, E., et al. (2008), Formation of large ( 100 µm) ice crystals near the tropical tropopause, Atmos. Chem. Phys., 8, 1621-1633, doi:10.5194/acp-8-1621-2008.
- Baker, B., and P. Lawson (2006), In situ observations of the microphysical properties of wave, cirrus and anvil clouds. Part 1: Wave clouds, J. Atmos. Sci., 63, 3160-3185.
- Evans, K. F., et al. (2006), In Situ Cloud Sensing with Multiple Scattering Lidar: Design and Validation of an Airborne Sensor, J. Atmos. Oceanic Technol., 23, 1068-1081.
- Garrett, T., et al. (2005), Evolution of a Florida Cirrus Anvil, J. Atmos. Sci., 62, 2352-2372.
- Fridlind, A. M., et al. (2004), Evidence for the Predominance of Mid-Tropospheric Aerosols as Subtropical Anvil Cloud Nuclei, Science, 304, 718.
- Curry, J. A., et al. (2000), FIRE Arctic clouds experiment., Bulletin of the American Meteorlogical Society, 81, 5.