Darrel Baumgardner
Organization:
Droplet Measurement Technologies
Email:
Business Phone:
Work:
(303) 440-5576
Business Address:
2545 Central Avenue
Boulder, CO 80301
United StatesFirst Author Publications:
- Baumgardner, D., et al. (2012), In Situ, Airborne Instrumentation: Addressing and Solving Measurement Problems in Ice Clouds, Bull. Am. Meteorol. Soc., ES29-ES34.
- Baumgardner, D., et al. (2001), The cloud, aerosol and precipitation spectrometer (CAPS): A new instrument for cloud investigations, Atmos. Res., 59-60, 251-264.
- Baumgardner, D., et al. (1996), Refractive indices of aerosols in the upper troposphere and lower stratosphere, Geophys. Res. Lett., 23, 749-752.
- Baumgardner, D., et al. (1995), The multiangle aerosol spectrometer probe: A new instrument for airborne particle research, AMS 11th Symposium on Boundary Layers and Turbulence, March 27-31, Charlotte, NC, 1995.
- Baumgardner, D., and A. Rodi. (1989), Laboratory and wind tunnel evaluations of the Rosemount icing detector, J. Atmos. Oceanic Technol., 6, 971-979.
Co-Authored Publications:
- Twohy, C., et al. (2021), Deep convection as a source of new particles in the midlatitude upper troposphere, J. Geophys. Res., 107, 4560, doi:10.1029/2001JD000323.
- Schumann, U., et al. (2017), Properties of individual contrails: a compilation of observations and some comparisons, Atmos. Chem. Phys., 17, 403-438, doi:10.5194/acp-17-403-2017.
- Beswick, K., et al. (2015), Cirrus properties from commercial aircraft measurements and implications for flight operations, Tellus, 67, 22, doi:10.3402/tellusb.v67.27876.
- Jolleys, M. D., et al. (2012), Characterizing the Aging of Biomass Burning Organic Aerosol by Use of Mixing Ratios: A Meta-analysis of Four Regions, Environ. Sci. Technol., 46, 13093-13102, doi:10.1021/es302386v.
- Stith, J. L., et al. (2011), Observations of ice nuclei and heterogeneous freezing in a Western Pacific extratropical storm, Atmos. Chem. Phys., 11, 6229-6243, doi:10.5194/acp-11-6229-2011.
- Arellano, A., et al. (2010), Constraints on black carbon aerosol distribution from Measurement of Pollution in the Troposphere (MOPITT) CO, Geophys. Res. Lett., 37, L17801, doi:10.1029/2010GL044416.
- Froyd, K., et al. (2010), Aerosols that form subvisible cirrus at the tropical tropopause, Atmos. Chem. Phys., 10, 209-218, doi:10.5194/acp-10-209-2010.
- Jensen, E., et al. (2010), Ice nucleation and cloud microphysical properties in tropical tropopause layer cirrus, Atmos. Chem. Phys., 10, 1369-1384, doi:10.5194/acp-10-1369-2010.
- Subramanian, R., et al. (2010), Black carbon over Mexico: the effect of atmospheric transport on mixing state, mass absorption cross-section, and BC/CO ratios, Atmos. Chem. Phys., 10, 219-237, doi:10.5194/acp-10-219-2010.
- Davis, S., et al. (2009), Comparison of airborne in situ measurements and Moderate Resolution Imaging Spectroradiometer (MODIS) retrievals of cirrus cloud optical and microphysical properties during the Midlatitude Cirrus Experiment (MidCiX), J. Geophys. Res., 114, D02203, doi:10.1029/2008JD010284.
- DeMott, P. J., et al. (2009), Correction to ‘‘African dust aerosols as atmospheric ice nuclei’’, Geophys. Res. Lett., 36, L07808, doi:10.1029/2009GL037639.
- Jensen, E., et al. (2008), Formation of large ( 100 µm) ice crystals near the tropical tropopause, Atmos. Chem. Phys., 8, 1621-1633, doi:10.5194/acp-8-1621-2008.
- Schwarz, J., et al. (2008), Coatings and their enhancement of black carbon light absorption in the tropical atmosphere, J. Geophys. Res., 113, D03203, doi:10.1029/2007JD009042.
- Chiriaco, M., et al. (2007), Comparison of CALIPSO-Like, LaRC, and MODIS Retrievals of Ice-Cloud Properties over SIRTA in France and Florida during CRYSTAL-FACE, J. Appl. Meteor. Climat., 46, 249-272, doi:10.1175/JAM2435.1.
- Garrett, T., et al. (2007), Observing cirrus halos to constrain in-situ measurements of ice crystal size 1 1 1 2, Atmos. Chem. Phys. Discuss., 7, 1295-1325.
- Heymsfield, A., et al. (2007), Reply, J. Atmos. Oceanic Technol., 24, 1511-1518, doi:10.1175/JTECH2077.1.
- Popp, P., et al. (2007), Condensed-phase nitric acid in a tropical subvisible cirrus cloud, Geophys. Res. Lett., 34, L24812, doi:10.1029/2007GL031832.
- Gao, R., et al. (2006), Measurements of relative humidity in a persistent contrail, Atmos. Environ., 40, 1590-1600, doi:10.1016/j.atmosenv.2005.11.021.
- Garrett, T., et al. (2006), Convective formation of pileus cloud near the tropopause, Atmos. Chem. Phys., 6, 1185-1200, doi:10.5194/acp-6-1185-2006.
- Heymsfield, A., et al. (2006), Effective Radius of Ice Cloud Particle Populations Derived from Aircraft Probes, J. Atmos. Oceanic Technol., 23, 361-380.
- Schwartz, J. P., et al. (2006), Single-particle measurements of midlatitude black carbon and light-scattering aerosols from the boundary layer to the lower stratosphere, J. Geophys. Res., 111, D1607, doi:10.1029/2006JD007076.
- Schwarz, J., et al. (2006), Single-particle measurements of midlatitude black carbon and light-scattering aerosols from the boundary layer to the lower stratosphere, J. Geophys. Res., 111, D16207, doi:10.1029/2006JD007076.
- Chepfer, H., et al. (2005), Particle habit in tropical ice clouds during CRYSTAL-FACE: Comparison of two remote sensing techniques with in situ observations, J. Geophys. Res., 110, D16204, doi:10.1029/2004JD005455.
- Garrett, T., et al. (2005), Evolution of a Florida Cirrus Anvil, J. Atmos. Sci., 62, 2352-2372.
- Jensen, E., et al. (2005), Formation of a Tropopause Cirrus Layer Observed over Florida during CRYSTAL-FACE, J. Geophys. Res., 110, 2005, doi:10.1029/2004JD004671.
- Fridlind, A. M., et al. (2004), Evidence for the Predominance of Mid-Tropospheric Aerosols as Subtropical Anvil Cloud Nuclei, Science, 304, 718.
- Gao, R., et al. (2004), Evidence That Nitric Acid Increases Relative Humidity in Low-Temperature Cirrus Clouds, Science, 303, 516-520, doi:10.1126/science.1091255.
- Garrett, T., et al. (2004), Convective generation of cirrus near the tropopause, J. Geophys. Res., 109, D21203, doi:10.1029/2004JD004952.
- Lee, S.-H., et al. (2004), New particle formation observed in the tropical/subtropical cirrus clouds, J. Geophys. Res., 109, D20209, doi:10.1029/2004JD005033.
- Popp, P., et al. (2004), Nitric acid uptake on subtropical cirrus cloud particles, J. Geophys. Res., 109, D06302, doi:10.1029/2003JD004255.
- Ridley, B., et al. (2004), Florida thunderstorms: A faucet of reactive nitrogen to the upper troposphere, J. Geophys. Res., 109, D17305, doi:10.1029/2004JD004769.
- Roskovensky, J. K., et al. (2004), Simultaneous retrieval of aerosol and thin cirrus optical depths using MODIS airborne simulator data during CRYSTAL-FACE and CLAMS, Geophys. Res. Lett., 31, L18110, doi:10.1029/2004GL020457.
- Xueref, I., et al. (2004), Combining a receptor-oriented framework for tracer distributions with a cloud-resolving model to study transport in deep convective clouds: Application to the NASA CRYSTAL-FACE campaign, Geophys. Res. Lett., 31, L14106, doi:10.1029/2004GL019811.
- Brooks, S. D., et al. (2003), Measurements of large stratospheric particles in the Arctic polar vortex, J. Geophys. Res., 108, 4652, doi:10.1029/2002JD003278.
- DeMott, P. J., et al. (2003), African dust aerosols as atmospheric ice nuclei, Geophys. Res. Lett., 30, 1732, doi:10.1029/2003GL017410.
- Drdla, K., et al. (2003), Evidence for the widespread presence of liquid-phase particles during the 1999–2000 Arctic winter, J. Geophys. Res., 108, 8318, doi:10.1029/2001JD001127.
- Garrett, T., et al. (2003), Small, highly reflective ice crystals in low-latitude cirrus, Geophys. Res. Lett., 30, 2132, doi:10.1029/2003GL018153.
- Hanisco, T. F., et al. (2002), Quantifying the rate of heterogeneous processing in the Arctic polar vortex with in situ observations of OH, J. Geophys. Res., 107, 8278, doi:10.1029/2000JD000425.
- Fahey, D., et al. (2001), The detection of large HNO3-containing particles in the winter artic stratosphere, Science, 291, 1026-1031.
- Gao, R., et al. (2001), Observational evidence for the role of denitrification in Arctic stratospheric ozone loss, Geophys. Res. Lett., 28, 2879-2882.
- Del Negro, L. A., et al. (1997), Evaluating the role of NAT, NAD, and liquid H2SO4/H2O/HNO3 solutins in Antarctic polar stratospheric cloud aerosol: Observations and implications, J. Geophys. Res., 102, 13255.
- Folkins, I., et al. (1997), Biomass burning and deep convectionin Indonesia: results from ASHOE/MESA, J. Geophys. Res., 102, 13,291-13.
- Jaeglé, L., et al. (1997), Evolution and stoichiometry of heterogeneous processing in the Antarctic stratosphere, J. Geophys. Res., 102.D11, 13235-13253.
- Dye, J. E., et al. (1996), In-situ observations of an Antarctic polar stratospheric cloud: Similarities with Arctic observations, Geophys. Res. Lett., 23, 1913-1916.
- Keim, E. R., et al. (1996), Observations of large reductions in the NO/NOy ratio near the mid-latitude tropopause and the role of heterogeneous chemistry, Geophys. Res. Lett., 23, 3223-3226.
- Jonsson, H., et al. (1995), Performance of a focused cavity aerosol spectrometer for measurements in the stratosphere of particle size in the 0.06-2.0 mm diameter range, J. Tech., 12, 115-129.
- Salawitch, R., et al. (1994), The Diurnal Variation of Hydrogen, Nitrogen, and Chlorine Radicals: Implications for the Heterogeneous Production of HNO2, Geophys. Res. Lett., 21, 2551-2554.
- Salawitch, R., et al. (1994), The Distribution of Hydrogen, Nitrogen, and Chlorine Radicals in the Lower Stratosphere: Implications for Changes in O3 Due to Emission of NOy from Supersonic Aircraft, Geophys. Res. Lett., 21, 2547-2550.
- Fahey, D., et al. (1993), In Situ Measurements Constraining the Role of Sulphate Aerosols in Mid-Latitude Ozone Depletion, Nature, 363, 509-514.
- Salawitch, R., et al. (1993), Chemical Loss of Ozone in the Arctic Polar Vortex in the Winter of 1991-1992, Science, 261, 1146-1149.
- Wilson, J., et al. (1993), In Situ Observations of Aerosol and Chlorine Monoxide After the 1991 Eruption of Mount Pinatubo: Effect of Reactions on Sulfate Aerosol, Science, 261, 1140-1143.
- Dye, J. E., et al. (1992), Particle Size Distributions in Arctic Polar Stratospheric Clouds, Growth and Freezing of Sulfuric Acid Droplets and Implications for Cloud Formation, J. Geophys. Res., 97, 8015-8034.
- Kawa, S. R., et al. (1992), The Arctic Polar Stratospheric Cloud Aerosol: Aircraft Measurements of Reactive Nitrogen, Total Water, and particles, J. Geophys. Res., 97, 7925-7938.
- Pueschel, R., et al. (1992), A Case of Type I Polar Stratospheric Cloud Formation by Heterogeneous Nucleation, J. Geophys. Res., 97, 8102-8114.
- Dye, J. E., et al. (1990), A Survey of Particle Measurements in the Arctic from the Forward Scattering Spectrometer Probe Model 300, Geophys. Res. Lett., 17, 409-412.
- Dye, J. E., et al. (1989), "Observed Particle Evolution in the Polar Stratospheric Cloud of January 24, Geophys. Res. Lett., 17, 413-416.
- Gandrud, B., et al. (1989), and K. K. Kelly. "The January 30, Geophys. Res. Lett., 17, 457-460.