Kevin Bowman
Organization:
Jet Propulsion Laboratory
Email:
Business Address:
California Institute of Technology
4800 Oak Grove Drive
Pasadena, CA 91109
United StatesFirst Author Publications:
- Bowman, K., et al. (2013), Evaluation of ACCMIP outgoing longwave radiation from Tropospheric ozone using TES satellite observations, Atmos. Chem. Phys., 13, 4057-4072.
Co-Authored Publications:
- Gaubert, B., et al. (2024), Neutral Tropical African CO2 Exchange Estimated From Aircraft and Satellite Observations, Global Biogeochem. Cycles, 37, e2023GB007804, doi:10.1029/2023GB007804.
- Payne, V., et al. (2022), Satellite measurements of peroxyacetyl nitrate from the Cross-Track Infrared Sounder: comparison with ATom aircraft measurements, Atmos. Meas. Tech., 15, 3497-3511, doi:10.5194/amt-15-3497-2022.
- Worden, H., et al. (2022), TROPESS/CrIS carbon monoxide profile validation with NOAA GML and ATom in situ aircraft observations, Atmos. Meas. Tech., 15, 5383-5398, doi:10.5194/amt-15-5383-2022.
- Liu, J., et al. (2021), Carbon Monitoring System Flux Net Biosphere Exchange 2020 (CMS-Flux NBE 2020), Earth Syst. Sci. Data, 13, 299-330, doi:10.5194/essd-13-299-2021.
- Maasakkers, J. D., et al. (2021), 2010–2015 North American methane emissions, sectoral contributions, and trends: a high-resolution inversion of GOSAT observations of atmospheric methane, Atmos. Chem. Phys., 21, 4339-4356, doi:10.5194/acp-21-4339-2021.
- Byrne, B., et al. (2020), 2 fluxes obtained by combining surface-based and 3 space-based atmospheric CO2 measurements, J. Geophys. Res., doi:10.1029/2019JD032029.
- Herman, R. L., et al. (2020), Comparison of optimal estimation HDO/H2O retrievals from AIRS with ORACLES measurements, Atmos. Meas. Tech., 13, 1825-1834, doi:10.5194/amt-13-1825-2020.
- Liao, E., et al. (2020), Amplification of the ocean carbon sink during El Niños: role of poleward Ekman transport and influence on atmospheric CO2, Global Biogeochem. Cycles, e2020GB006574, n/a, doi:10.1029/2020GB006574.
- Yin, Y., et al. (2020), Fire decline in dry tropical ecosystems enhances decadal land carbon sink, Nature, doi:10.1038/s41467-020-15852-2.
- Herman, R. L., et al. (2019), Comparison of Optimal Estimation HDO/H2O Retrievals from AIRS with ORACLES measurements, doi:https://doi.org/10.5194/amt-2019-195 (submitted).
- Konings, A. G., et al. (2019), Global satellite-driven estimates of heterotrophic respiration, Biogeosciences, 16, 2269-2284.
- Maasakkers, J. D., et al. (2019), Global distribution of methane emissions, emission trends, and OH concentrations and trends inferred from an inversion of GOSAT satellite data for 2010–2015, Atmos. Chem. Phys., 19, 7859-7881, doi:10.5194/acp-19-7859-2019.
- Miyazaki, K., et al. (2019), Balance of Emission and Dynamical Controls on Ozone During the Korea-United States Air Quality Campaign From Multiconstituent Satellite Data Assimilation, J. Geophys. Res..
- Kuai, L., et al. (2017), Hydrological controls on the tropospheric ozone greenhouse gas effect, Elem Sci Anth, 5, 10, doi:10.1525/elementa.208.
- Liu, J., et al. (2017), R ES E A RC H | R E MO T E S E NS I NG, Science, 358, eaam5690, doi:10.1126/science.aam5690.
- Bousserez, N., et al. (2015), Improved analysis-error covariance matrix for high-dimensional variational inversions: application to source estimation using a 3D atmospheric transport model, Q. J. R. Meteorol. Soc., doi:10.1002/qj.2495.
- Liu, J., K. Bowman, and D. Henze (2015), Source-receptor relationships of column-average CO2 and implications for the impact of observations on flux inversions, J. Geophys. Res., 120, Atmos., doi:10.1002/2014JD022914.
- Ott, L., et al. (2015), Assessing the magnitude of CO2 flux uncertainty in atmospheric CO2 records using products from NASA’s Carbon Monitoring Flux Pilot Project, J. Geophys. Res., 120, 734-765, doi:10.1002/2014JD022411.
- Deng, F., et al. (2014), Inferring regional sources and sinks of atmospheric CO2 from GOSAT XCO2 data, Atmos. Chem. Phys., 14, 3703-3727, doi:10.5194/acp-14-3703-2014.
- Kahn, B., et al. (2014), The Atmospheric Infrared Sounder version 6 cloud products, Atmos. Chem. Phys., 14, 399-426, doi:10.5194/acp-14-399-2014.
- Liu, J., et al. (2014), Carbon monitoring system flux estimation and attribution: impact of ACOS-GOSAT XCO2 sampling on the inference of terrestrial biospheric sources and sinks, Tellus, 66, 22486, doi:10.3402/tellusb.v66.22486.
- Fu, D., et al. (2013), Characterization of ozone profiles derived from Aura TES and OMI radiances, Atmos. Chem. Phys., 13, 3445-3462.
- Kuai, L., et al. (2013), Profiling tropospheric CO2 using Aura TES and TCCON instruments, Atmos. Meas. Tech., 6, 63-79.
- Luo, M., et al. (2013), Carbon monoxide (CO) vertical profiles derived from joined TES and MLS measurements, J. Geophys. Res., 118, 2169-8996.
- Shindell, D., et al. (2013), Interactive ozone and methane chemistry in GISS-E2 historical and future climate simulations, Atmos. Chem. Phys., 13, 2653-2689, doi:10.5194/acp-13-2653-2013.
- Wielicki, B., et al. (2013), Achieving Climate Change Absolute Accuracy in Orbit, Bull. Am. Meteorol. Soc., 94, 1519-1539, doi:10.1175/BAMS-D-12-00149.1.
- Worden, H., et al. (2013), Decadal record of satellite carbon monoxide observations, Atmos. Chem. Phys., 13, 837-850, doi:10.5194/acp-13-837-2013.
- Aghedo, A. M., et al. (2011), The impact of orbital sampling, monthly averaging and vertical resolution on climate chemistry model evaluation with satellite observations, Atmos. Chem. Phys., 11, 6493-6514, doi:10.5194/acp-11-6493-2011.
- Aghedo, A. M., et al. (2011), The vertical distribution of ozone instantaneous radiative forcing from satellite and chemistry climate models, J. Geophys. Res., 116, D01305, doi:10.1029/2010JD014243.
- Lee, J., et al. (2011), Relating tropical ocean clouds to moist processes using water vapor isotope measurements, Atmos. Chem. Phys., 11, 741-752, doi:10.5194/acp-11-741-2011.
- Voulgarakis, A., et al. (2011), Global multi-year O3-CO correlation patterns from models and TES satellite observations, Atmos. Chem. Phys., 11, 5819-5838, doi:10.5194/acp-11-5819-2011.
- Worden, H., et al. (2011), Sensitivity of outgoing longwave radiative flux to the global vertical distribution of ozone characterized by instantaneous radiative kernels from Aura�TES, J. Geophys. Res., doi:10.1029/2010JD015101.
- Wunch, D., et al. (2010), Calibration of the Total Carbon Column Observing Network using aircraft profile data, Atmos. Meas. Tech., 3, 1351-1362, doi:10.5194/amt-3-1351-2010.
- Parrington, M., et al. (2009), Impact of the assimilation of ozone from the Tropospheric Emission Spectrometer on surface ozone across North America, Geophys. Res. Lett., 36, L04802, doi:10.1029/2008GL036935.
- Fishman, J., et al. (2008), Remote Sensing Of Tropospheric Pollution From Space, Bull. Am. Meteorol. Soc., 805-821.
- Nassar, R., et al. (2008), Validation of Tropospheric Emission Spectrometer (TES) nadir ozone profiles using ozonesonde measurements, J. Geophys. Res., 113, D15S17, doi:10.1029/2007JD008819.
- Zhang, L., et al. (2008), Transpacific transport of ozone pollution and the effect of recent Asian emission increases on air quality in North America: an integrated analysis using satellite, aircraft, ozonesonde, and surface observations, Atmos. Chem. Phys., 8, 6117-6136, doi:10.5194/acp-8-6117-2008.
- Worden, J., et al. (2007), Improved tropospheric ozone profile retrievals using OMI and TES radiances, Geophys. Res. Lett., 34, L01809, doi:10.1029/2006GL027806.
- Zhang, L., et al. (2006), Ozone-CO correlations determined by the TES satellite instrument in continental outflow regions, Geophys. Res. Lett., 33, L18804, doi:10.1029/2006GL026399.