Helen Worden
Organization:
National Center for Atmospheric Research
First Author Publications:
- Worden, H., et al. (2022), TROPESS/CrIS carbon monoxide profile validation with NOAA GML and ATom in situ aircraft observations, Atmos. Meas. Tech., 15, 5383-5398, doi:10.5194/amt-15-5383-2022.
- Worden, H., et al. (2019), New constraints on biogenic emissions using satellite-based estimates of carbon monoxide fluxes, Atmos. Chem. Phys., 19, 13569-13579, doi:10.5194/acp-19-13569-2019.
- Worden, H., et al. (2019), New constraints on biogenic emissions using satellite-based estimates of carbon monoxide fluxes, Atmos. Chem. Phys., 19, 13569-13579, doi:10.5194/acp-19-13569-2019.
- Worden, H., et al. (2013), Decadal record of satellite carbon monoxide observations, Atmos. Chem. Phys., 13, 837-850, doi:10.5194/acp-13-837-2013.
- Worden, H., et al. (2012), Satellite-based estimates of reduced CO and CO2 emissions due to traffic restrictions during the 2008 Beijing Olympics, Geophys. Res. Lett., 39, L14802, doi:10.1029/2012GL052395.
- Worden, H., et al. (2011), Sensitivity of outgoing longwave radiative flux to the global vertical distribution of ozone characterized by instantaneous radiative kernels from Aura�TES, J. Geophys. Res., doi:10.1029/2010JD015101.
- Worden, H., R. Beer, and C. Rinsland (1997), Airborne infrared spectroscopy of 1994 western wildfires, J. Geophys. Res., 102, 1287.
Co-Authored Publications:
- Gaubert, B., et al. (2023), Global Scale Inversions from MOPITT CO and MODIS AOD, Remote Sens., 15, 4813, doi:10.3390/rs15194813.
- Tang, W., et al. (2023), Application of the Multi-Scale Infrastructure for Chemistry and Aerosols version 0 (MUSICAv0) for air quality research in Africa, Geosci. Model. Dev., doi:10.5194/gmd-16-6001-2023.
- Buchholz, R., et al. (2022), New seasonal pattern of pollution emerges from changing North American wildfires, Nat Commun, 13, 2043, doi:10.1038/s41467-022-29623-8.
- Deeter, M., et al. (2022), The MOPITT Version 9 CO product: sampling enhancements and validation, Atmos. Meas. Tech., 15, 2325-2344, doi:10.5194/amt-15-2325-2022.
- Deeter, M., et al. (2022), The MOPITT Version 9 CO product: sampling enhancements and validation, Atmos. Meas. Tech., 15, 2325-2344, doi:10.5194/amt-15-2325-2022.
- Hegarty, J., et al. (2022), Validation and error estimation of AIRS MUSES CO profiles with HIPPO, ATom, and NOAA GML aircraft observations, Atmos. Meas. Tech., 15, 205-223, doi:10.5194/amt-15-205-2022.
- Marey, H. S., et al. (2022), Analysis of improvements in MOPITT observational coverage over Canada, Atmos. Meas. Tech., 15, 701-719, doi:10.5194/amt-15-701-2022.
- Qu, Z., et al. (2022), Sector-based top-down estimates of NOx, SO2, and CO emissions in East Asia, Geophys. Res. Lett., 49, e2021GL096009, doi:10.1029/2021GL096009.
- Tang, W., et al. (2022), Effects of Fire Diurnal Variation and Plume Rise on U.S. Air Quality During FIREX-AQ and WE-CAN Based on the Multi-Scale Infrastructure for Chemistry and Aerosols (MUSICAv0), J. Geophys. Res., 127, e2022JD036650, doi:10.1029/2022JD036650.
- Buchholz, R., et al. (2021), Air pollution trends measured from Terra: CO and AOD over industrial, fire-prone, and background regions, Remote Sensing of Environment, 256, 112275, doi:10.1016/j.rse.2020.112275.
- Deeter, M., et al. (2021), Impacts of MOPITT cloud detection revisions on observation frequency and mapping of highly polluted scenes, Remote Sensing of Environment, 262, 112516, doi:10.1016/j.rse.2021.112516.
- Hedelius, J. K., et al. (2021), Regional and Urban Column CO Trends and Anomalies as Observed by MOPITT Over 16 Years, J. Geophys. Res., 126, e2020JD033967, doi:10.1029/2020JD033967.
- Park, M., et al. (2021), Fate of Pollution Emitted During the 2015 Indonesian Fire Season, J. Geophys. Res., 126, e2020JD033474, doi:10.1029/2020JD033474.
- Tang, W., et al. (2021), Assessing sub-grid variability within satellite pixels over urban regions using airborne mapping spectrometer measurements, Atmos. Meas. Tech., 14, 4639-4655, doi:10.5194/amt-14-4639-2021.
- Worden, J., et al. (2021), Satellite Observations of the Tropical Terrestrial Carbon Balance and Interactions With the Water Cycle During the 21st Century, Rev. Geophys..
- Yin, Y., et al. (2021), Fire decline in dry tropical ecosystems enhances decadal land carbon sink, Nature, doi:10.1038/s41467-020-15852-2.
- Bloom, A. A., et al. (2020), Lagged effects regulate the inter-annual variability of the tropical carbon balance, Biogeosciences, 17, 6393-6422, doi:10.5194/bg-17-6393-2020.
- Gaubert, B., et al. (2020), Correcting model biases of CO in East Asia: impact on oxidant distributions during KORUS-AQ, Atmos. Chem. Phys., 20, 14617-14647, doi:10.5194/acp-20-14617-2020.
- Martínez-Alonso, S., et al. (2020), 1.5 years of TROPOMI CO measurements: comparisons to MOPITT and ATom, Atmos. Meas. Tech., 13, 4841-4864, doi:10.5194/amt-13-4841-2020.
- Miyazaki, K., et al. (2020), Updated tropospheric chemistry reanalysis and emission estimates, TCR-2, for 2005–2018, Earth Syst. Sci. Data, 12, 2223-2259, doi:10.5194/essd-12-2223-2020.
- Tang, W., et al. (2020), Assessing Measurements of Pollution in the Troposphere (MOPITT) carbon monoxide retrievals over urban versus non-urban regions, Atmos. Meas. Tech., 13, 1337-1356, doi:10.5194/amt-13-1337-2020.
- Yin, Y., et al. (2020), Fire decline in dry tropical ecosystems enhances decadal land carbon sink, Nature, doi:10.1038/s41467-020-15852-2.
- Deeter, M., et al. (2019), Radiance-based retrieval bias mitigation for the MOPITT instrument: the version 8 product, Atmos. Meas. Tech., 12, 4561-4580, doi:10.5194/amt-12-4561-2019.
- Deeter, M., et al. (2019), Radiance-based retrieval bias mitigation for the MOPITT instrument: the version 8 product, Atmos. Meas. Tech., 12, 4561-4580, doi:10.5194/amt-12-4561-2019.
- Hedelius, J. K., et al. (2019), Evaluation of MOPITT Version 7 joint TIR-NIR X-CO retrievals with TCCON, Atmos. Meas. Tech., 12, 5547-5572, doi:10.5194/amt-12-5547-2019.
- Tang, W., et al. (2019), Satellite data reveal a common combustion emission pathway for major cities in China, Atmos. Chem. Phys., 19, 4269-4288, doi:10.5194/acp-19-4269-2019.
- Zheng, B., et al. (2019), Global atmospheric carbon monoxide budget 2000-2017 inferred from multi-species atmospheric inversions, Earth Syst. Sci. Data, 11, 1411-1436, doi:10.5194/essd-11-1411-2019.
- Buchholz, R., et al. (2018), Links Between Carbon Monoxide and Climate Indices for the Southern Hemisphere and Tropical Fire Regions, J. Geophys. Res., 123, 9786-9800, doi:10.1029/2018JD028438.
- Gaudel, et al. (2018), Tropospheric Ozone Assessment Report: Present-day distribution and trends of tropospheric ozone relevant to climate and global atmospheric chemistry model evaluation, Elem Sci Anth, 6, 39, doi:10.1525/elementa.
- Jiang, Z., et al. (2018), Unexpected slowdown of US pollutant emission reduction in the past decade, Proc. Natl. Acad. Sci., 201801191, doi:10.1073/pnas.1801191115.
- Jiang, Z., et al. (2018), Unexpected slowdown of US pollutant emission reduction in the past decade, Proc. Natl. Acad. Sci., 115, 5099-5104, doi:10.1073/pnas.1801191115.
- Kuai, L., et al. (2017), Hydrological controls on the tropospheric ozone greenhouse gas effect, Elem Sci Anth, 5, 10, doi:10.1525/elementa.208.
- Gaubert, B., et al. (2016), Toward a chemical reanalysis in a coupled chemistry-climate model: An evaluation of MOPITT CO assimilation and its impact on tropospheric composition, J. Geophys. Res., 121, 7310-7343, doi:10.1002/2016JD024863.
- Barré, J., et al. (2015), Assessing the impacts of assimilating IASI and MOPITT CO retrievals using CESM-CAM-chem and DART, J. Geophys. Res., 120, 501-10, doi:10.1002/2015JD023467.
- Deeter, M., et al. (2015), Information content of MOPITT CO profile retrievals: Temporal and geographical variability, J. Geophys. Res., 120, 12723-12738, doi:10.1002/2015JD024024.
- George, M., et al. (2015), An examination of the long-term CO records from MOPITT and IASI: comparison of retrieval methodology, Atmos. Meas. Tech., 8, 4313-4328, doi:10.5194/amt-8-4313-2015.
- Jiang, Z., et al. (2015), Regional data assimilation of multi-spectral MOPITT observations of CO over North America, Atmos. Chem. Phys., 15, 6801-6814, doi:10.5194/acp-15-6801-2015.
- Bowman, K., et al. (2013), Evaluation of ACCMIP outgoing longwave radiation from Tropospheric ozone using TES satellite observations, Atmos. Chem. Phys., 13, 4057-4072.
- Silva, S. J., A. Arellano, and H. Worden (2013), Toward anthropogenic combustion emission constraints from space-based analysis of urban CO2/CO sensitivity, Geophys. Res. Lett., 40, 4971-4976, doi:10.1002/grl.50954.
- Aghedo, A. M., et al. (2011), The vertical distribution of ozone instantaneous radiative forcing from satellite and chemistry climate models, J. Geophys. Res., 116, D01305, doi:10.1029/2010JD014243.
- Nassar, R., et al. (2008), Validation of Tropospheric Emission Spectrometer (TES) nadir ozone profiles using ozonesonde measurements, J. Geophys. Res., 113, D15S17, doi:10.1029/2007JD008819.
- Worden, J., et al. (2007), Improved tropospheric ozone profile retrievals using OMI and TES radiances, Geophys. Res. Lett., 34, L01809, doi:10.1029/2006GL027806.
- Zhang, L., et al. (2006), Ozone-CO correlations determined by the TES satellite instrument in continental outflow regions, Geophys. Res. Lett., 33, L18804, doi:10.1029/2006GL026399.