Robert Yokelson
Organization:
University of Montana
First Author Publications:
- Yokelson, R., et al. (2009), Emissions from biomass burning in the Yucatan, Atmos. Chem. Phys., 9, 5785-5812, doi:10.5194/acp-9-5785-2009.
- Yokelson, R., et al. (2008), The tropical forest and fire emissions experiment: laboratory fire measurements and synthesis of campaign data, Atmos. Chem. Phys., 8, 3509-3527, doi:10.5194/acp-8-3509-2008.
- Yokelson, R., et al. (2007), The Tropical Forest and Fire Emissions Experiment: overview and airborne fire emission factor measurements, Atmos. Chem. Phys., 7, 5175-5196, doi:10.5194/acp-7-5175-2007.
- Yokelson, R., et al. (2007), Emissions from forest fires near Mexico City, Atmos. Chem. Phys., 7, 5569-5584, doi:10.5194/acp-7-5569-2007.
Co-Authored Publications:
- Gkatzelis, G., et al. (2024), Parameterizations of US wildfire and prescribed fire emission ratios and emission factors based on FIREX-AQ aircraft measurements, Atmos. Chem. Phys., doi:10.5194/acp-24-929-2024.
- Gkatzelis, G., et al. (2024), Parameterizations of US wildfire and prescribed fire emission ratios and emission factors based on FIREX-AQ aircraft measurements, Atmos. Chem. Phys., doi:10.5194/acp-24-929-2024.
- Jin, L., et al. (2023), Constraining emissions of volatile organic compounds from western US wildfires with WE-CAN and FIREX-AQ airborne observations, Atmos. Chem. Phys., doi:10.5194/acp-23-5969-2023.
- June, N. A., et al. (2023), Aerosol size distribution changes in FIREX-AQ biomass burning plumes: the impact of plume concentration on coagulation and OA condensation/evaporation, Atmos. Chem. Phys., doi:10.5194/acp-22-12803-2022.
- Pagonis, D., et al. (2023), Impact of Biomass Burning Organic Aerosol Volatility on Smoke Concentrations Downwind of Fires, Environ. Sci. Technol., 57, 17011-17021, doi:10.1021/acs.est.3c05017.
- Travis, K. R., et al. (2023), Emission Factors for Crop Residue and Prescribed Fires in the Eastern US during FIREX-AQ, J. Geophys. Res., 128, e2023JD039309, doi:10.1029/2023JD039309.
- Warneke, C., et al. (2023), Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ), J. Geophys. Res., 128, e2022JD037758, doi:10.1029/2022JD037758.
- Adachi, K., et al. (2022), Fine ash-bearing particles as a major aerosol component in biomass burning smoke, J. Geophys. Res., 127, e2021JD035657, doi:10.1029/2021JD035657.
- Xu, L., et al. (2022), Ozone chemistry in western U.S. wildfire plumes, Science Advances, 7, eabl3648, doi:10.1126/sciadv.abl3648.
- Xu, L., et al. (2022), Adv.7, eabl3648 (2021) 8 December 2021SCIENCE ADVANCES, Ozone chemistry in western U.S. wildfire plumes, Xu et al., Sci., 7, eabl3648, doi:10.1126/sciadv.abl3648.
- Liu, X., et al. (2017), Airborne measurements of western U.S. wildfire emissions: Comparison with prescribed burning and air quality implications, J. Geophys. Res., 122, 6108-6129, doi:10.1002/2016JD026315.
- Perring, A., et al. (2017), In situ measurements of water uptake by black carbon-containing aerosol in wildfire plumes, J. Geophys. Res., 122, 1086-1097, doi:10.1002/2016JD025688.
- Carrico, C. M., et al. (2016), Rapidly evolving ultrafine and fine mode biomass smoke physical properties: Comparing laboratory and field results, J. Geophys. Res., 121, doi:10.1002/2015JD024389.
- Coggon, M. M., et al. (2016), Emissions of nitrogen-containing organic compounds from the burning of herbaceous and arboraceous biomass: Fuel composition dependence and the variability of commonly used nitrile tracers, Geophys. Res. Lett., 43, 9903-9912, doi:10.1002/2016GL070562.
- Collier, S., et al. (2016), Regional Influence of Aerosol Emissions from Wildfires Driven by Combustion Efficiency: Insights from the BBOP Campaign, Environ. Sci. Technol., 50, 8613-8622, doi:10.1021/acs.est.6b01617.
- Levin, E., et al. (2016), Ice-nucleating particle emissions from biomass combustion and the potential importance of soot aerosol, J. Geophys. Res., 121, doi:10.1002/2016JD024879.
- Liu, X., et al. (2016), Agricultural fires in the southeastern U.S. during SEAC4RS: Emissions of trace gases and particles and evolution of ozone, reactive nitrogen, and organic aerosol, J. Geophys. Res., 121, 7383-7414, doi:10.1002/2016JD025040.
- Müller, M., et al. (2016), In situ measurements and modeling of reactive trace gases in a small biomass burning plume, Atmos. Chem. Phys., 16, 3813-3824, doi:10.5194/acp-16-3813-2016.
- Stockwell, C. E., et al. (2016), Field measurements of trace gases and aerosols emitted by peat fires in Central Kalimantan, Indonesia, during the 2015 El Niño, Atmos. Chem. Phys., 16, 11711-11732, doi:10.5194/acp-16-11711-2016.
- Toon, B., et al. (2016), Planning, implementation, and scientific goals of the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) field mission, J. Geophys. Res., 121, 4967-5009, doi:10.1002/2015JD024297.
- Alvarado, M. J., et al. (2015), Investigating the links between ozone and organic aerosol chemistry in a biomass burning plume from a prescribed fire in California chaparral, Atmos. Chem. Phys., 15, 6667-6688, doi:10.5194/acp-15-6667-2015.
- Hatch, L. E., et al. (2015), Identification and quantification of gaseous organic compounds emitted from biomass burning using two-dimensional gas chromatography-time-of-flight mass spectrometry, Atmos. Chem. Phys., 15, 1865-1899, doi:10.5194/acp-15-1865-2015.
- May, A. A., et al. (2015), Observations and analysis of organic aerosol evolution in some prescribed fire smoke plumes, Atmos. Chem. Phys., 15, 6323-6335, doi:10.5194/acp-15-6323-2015.
- Saide Peralta, et al. (2015), Revealing important nocturnal and day-to-day variations in fire smoke emissions through a multiplatform inversion, Geophys. Res. Lett., 42, 3609-3618, doi:10.1002/2015GL063737.
- Stockwell, C. E., et al. (2015), Characterization of biomass burning emissions from cooking fires, peat, crop residue, and other fuels with high-resolution proton-transfer-reaction time-of-flight mass spectrometry, Atmos. Chem. Phys., 15, 845-865, doi:10.5194/acp-15-845-2015.
- Xiao, Q., et al. (2015), Indoor air pollution from burning yak dung as a household fuel in Tibet, Atmos. Environ., 102, 406-412, doi:10.1016/j.atmosenv.2014.11.060.
- Jayarathne, T., et al. (2014), Emissions of Fine Particle Fluoride from Biomass Burning, Environ. Sci. Technol., 48, 12636-12644, doi:10.1021/es502933j.
- Levin, E., et al. (2014), A New Method to Determine the Number Concentrations of Refractory Black Carbon Ice Nucleating Particles, Aerosol Sci. Tech., 48, 1264-1275, doi:10.1080/02786826.2014.977843.
- Stockwell, C. E., et al. (2014), Trace gas emissions from combustion of peat, crop residue, domestic biofuels, grasses, and other fuels: configuration and Fourier transform infrared (FTIR) component of the fourth Fire Lab at, Atmos. Chem. Phys., 14, 9727-9754, doi:10.5194/acp-14-9727-2014.
- Reid, J., et al. (2013), Observing and understanding the Southeast Asian aerosol system by remote sensing: An initial review and analysis for the Seven Southeast Asian Studies (7SEAS) program, Atmos. Res., 122, 403-468, doi:10.1016/j.atmosres.2012.06.005.
- Akagi, S., et al. (2011), Emission factors for open and domestic biomass burning for use in atmospheric models, Atmos. Chem. Phys., 11, 4039-4072, doi:10.5194/acp-11-4039-2011.
- Simpson, I. J., et al. (2011), Boreal forest fire emissions in fresh Canadian smoke plumes: C1-C10 volatile organic compounds (VOCs), CO2, CO, NO2, NO, HCN and CH3CN, Atmos. Chem. Phys., 11, 6445-6463, doi:10.5194/acp-11-6445-2011.
- Crounse, J. D., et al. (2009), Biomass burning and urban air pollution over the Central Mexican Plateau, Atmos. Chem. Phys., 9, 4929-4944, doi:10.5194/acp-9-4929-2009.
- Karl, T., et al. (2007), The tropical forest and fire emissions experiment: Emission, chemistry, and transport of biogenic volatile organic compounds in the lower atmosphere over Amazonia, J. Geophys. Res., 112, D18302, doi:10.1029/2007JD008539.
- Tabazadeh, A., et al. (2004), Heterogeneous chemistry involving methanol in tropospheric clouds, Geophys. Res. Lett., 31, L06114, doi:10.1029/2003GL018775.
- Hobbs, P. V., et al. (2003), Evolution of gases and particles from a savanna fire in South Africa, J. Geophys. Res., 108, doi:10.1029/2002JD002352.
- Swap, B., et al. (2002), The Southern African Regional Science Initiative (SAFARI 2000): Overview of the dry season field campaign, S. African J. Sci., 98, 125-130.