Robert Chatfield
Organization:
NASA Ames Research Center
Email:
Business Phone:
Work:
(650) 604-5490
Mobile:
(650) 793-5227
Business Address:
Earth Science Division
Mail Stop 245-5
Moffett Field, CA 94035-1000
United StatesWebsite:
First Author Publications:
- Chatfield, R., et al. (2019), Satellite Mapping of PM2.5 Episodes in the Wintertime San Joaquin Valley: A “Static” Model Using Column Water Vapor, Atmos. Chem. Phys., doi:10.5194/acp-2019-262.
- Chatfield, R., and R. F. Esswein (2014), True Emission Factors for Western Forest Fires: Better Estimation and Usage, Long Beach, California, Proceedings of A&WMA's 107th Annual Conference, 107, 27-31.
- Chatfield, R., et al. (2013), Ozone Monitoring Instrument (OMI) multi satellite observations, Iss., 63, 1434-1446.
- Chatfield, R., and R. Esswein (2012), R. Esswein.. Estimation of surface O3 from lower-troposphere partial-column information, Atmos. Environ., 61, 103-113.
- Chatfield, R., et al. (2010), Controls on urban ozone production rate as indicated by formaldehyde oxidation rate and nitric oxide, Atmos. Environ., 44, 5395-5406, doi:10.1016/j.atmosenv.2010.08.056.
- Chatfield, R., et al. (2007), Mechanisms for the intraseasonal variability of tropospheric ozone over the Indian Ocean during the winter monsoon, J. Geophys. Res., 112, D10303, doi:10.1029/2006JD007347.
- Chatfield, R., et al. (2004), Convective lofting links Indian Ocean air pollution to paradoxical South Atlantic ozone maxima, Geophys. Res. Lett., 31, L06103, doi:10.1029/2003GL018866.
- Chatfield, R., et al. (2002), The subtropical global plume in the Pacific Exploratory Mission-Tropics A (PEM-Tropics A), PEM-Tropics B, and the Global Atmospheric Sampling Program (GASP): How tropical emissions affect the remote Pacific, J. Geophys. Res., 107, doi:10.1029/2001JD000497.
- Chatfield, R., et al. (1996), A general model of fire emissions and chemistry African/oceanic plumes (O3, CO, PAN, smoke) in TRACE A, J. Geophys. Res., 101.D19, 24,279-24.
- Chatfield, R. (1994), The Anomalous HNO3/NOx Ratio of Remote Tropospheric Air: Conversion of Nitric Acid to Formic Acid and NOx?", Geophys. Res. Lett., 21, 2705-2708.
- Chatfield, R., and P. J. Crutzen (1990), Are There Interactions of Iodine and Sulfur Species in Marine Air Photochemistry?, J. Geophys. Res., D13, 22,319-22.
- Chatfield, R., and A. C. Delany (1990), Convection Links Biomass Burning to Increased Tropical Ozone: However, Models will tend to Overpredict O3, J. Geophys. Res., D11, 18.
Co-Authored Publications:
- Leifer, I., et al. (2020), Air pollution inputs to the Mojave Desert by fusing surface mobile and airborne in situ and airborne and satellite remote sensing: A case study of interbasin transport with numerical model validation, Atmos. Environ., 224, 117184, doi:10.1016/j.atmosenv.2019.117184.
- Lee, H. J., R. Chatfield, and A. Strawa (2016), Enhancing the Applicability of Satellite Remote Sensing for PM2.5 Estimation Using MODIS Deep Blue AOD and Land Use Regression in California, United States. Environmental Science & Technology, 50, 6546-6555, doi:10.1021/acs.est.6b01438.
- Sorek-Hamer, M., et al. (2013), Improved retrieval of PM2.5 from satellite data products using non-linear methods, Environmental Pollution, 182, 417-423.
- Natraj, V., et al. (2011), Multi-spectral sensitivity studies for the retrieval of tropospheric and lowermost tropospheric ozone from simulated clear-sky GEO-CAPE measurements, Atmos. Environ., 45, 7151-7165, doi:10.1016/j.atmosenv.2011.09.014.
- Freitas, S. R., et al. (2009), The Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS) - Part 1: Model description and evaluation, Atmos. Chem. Phys., 9, 2843-2861.
- Frietas, S. R., et al. (2007), Including the sub-grid scale plume rise of vegetation fires in low resolution atmospheric transport models, Atmos. Chem. Phys., 7, 3385-3398.
- Guan, H., et al. (2007), Modeling the effect of plume-rise on the transport of carbon monoxide over Africa and its exports with NCAR CAM, Atmos. Chem. Phys. Discuss., 7, 18145-18177.
- Thompson, A. M., et al. (2007), Intercontinental Chemical Transport Experiment Ozonesonde Network Study (IONS) 2004: 1. Summertime upper troposphere/lower stratosphere ozone over northeastern North America, J. Geophys. Res., 112, D12S12, doi:10.1029/2006JD007441.
- Liu, X., et al. (2006), First directly retrieved global distribution of tropospheric column ozone from GOME: Comparison with the GEOS-CHEM model, J. Geophys. Res., 111, D02308, doi:10.1029/2005JD006564.
- Freitas, S., et al. (2005), Monitoring the transport of biomass burning emissions in South America, Environmental Fluid Mechanics, 5, 135-167.
- Singh, H., et al. (2004), Analysis of the atmospheric distribution, sources, and sinks of oxygenated volatile organic chemicals (OVOC) based on measurements over the Pacific during TRACE-P, J. Geophys. Res., 109, doi:10.1029/2003JD003883.
- Faloona, I., et al. (2000), Observations of HOX and its relationship with NOX in the upper troposphere during SONEX, J. Geophys. Res., 105, 3771-3783.
- Folkins, I., and R. Chatfield (2000), Impact of acetone on ozone production and OH in the upper troposphere at high NOx, J. Geophys. Res., 105, 11,585-11.
- Folkins, I., et al. (1997), Biomass burning and deep convectionin Indonesia: results from ASHOE/MESA, J. Geophys. Res., 102, 13,291-13.
- Olson, J., et al. (1997), Results from theIPCC photchemical model intercomparison (PhotoComp), J. Geophys. Res., 102, 5979-5991.
- Krishnamurti, T. N., et al. (1996), Passive tracer transports relevant to the TRACE-A Experiment, J. Geophys. Res., 101, 23,889-23.
- Potter, C., S. A. Klooster, and R. Chatfield (1996), Production and consumption of carbon monoxide in soils: A global model analysis of spatial and seasonal variation, Chemosphere, 33.6, 1175-1193.
- Singh, H., et al. (1996), Impact of biomass burning emissions on the composition of the south Atlantic troposphere: Reactive nitrogen and ozone, J. Geophys. Res., 101.D19, 24,203-24.
- Ridley, B., et al. (1992), Measurements and Model Simulations of the Photostationary State During the Mauna Loa Observatory Photochemistry Experiment: Implications for Radical Concentrations and Ozone Production and Loss Rates, J. Geophys. Res., 97, 10,375-10.
- Madronich, S., et al. (1990), A Photochemical Origin of Acetic Acid in the Troposphere, Geophys. Res. Lett., 17, 2361-2364.