Paquita Zuidema
Organization:
University of Miami
RSMAS
Email:
Business Phone:
Work:
(305) 421-4276
Mobile:
(786) 218-3594
Business Address:
University of Miami/RSMAS
4600 Rickenbacker Cswy
Miami, FL 33149
United StatesFirst Author Publications:
- Zuidema, P., et al. (2016), Interactions: Smoke and Clouds above the Southeast Atlantic Upcoming Field Campaigns Probe Absorbing Aerosol’s Impact on Climate, Bull. Am. Meteorol. Soc., 19-23, doi:10.1175/BAMS-D-15-00082.1.
- Zuidema, P., and B. E. Mapes (2008), Cloud vertical structure observed from space and ship over the Bay of Bengal and eastern tropical Pacific, J. Meteor. Soc. Japan, 86A, 205-218.
- Zuidema, P., and R. Joyce (2008), Water vapor, cloud liquid water paths, and rain rates over northern high latitude open seas, J. Geophys. Res., 113, D05205, doi:10.1029/2007JD009040.
- Zuidema, P., R. Davies, and C. M. Moroney (2003), On the angular radiance closure of tropical cumulus congestus clouds observed by the Multiangle Imaging Spectroradiometer, J. Geophys. Res., 108, 4626, doi:10.1029/2003JD003401.
Co-Authored Publications:
- Xu, Y., et al. (2024), Boundary Layer Structures Over the Northwest Atlantic Derived From Airborne High Spectral Resolution Lidar and Dropsonde Measurements During the ACTIVATE Campaign, J. Geophys. Res., 129, e2023JD039878, doi:10.1029/2023JD039878.
- Ferrare, R., et al. (2023), Airborne HSRL-2 measurements of elevated aerosol depolarization associated with non-spherical sea salt, TYPE Original Research, doi:10.3389/frsen.2023.1143944.
- Nied, J., et al. (2023), A cloud detection neural network for above-aircraft clouds using airborne cameras, Frontiers in Remote Sensing, 4, 10.3389/frsen.2023.1118745, doi:10.3389/frsen.2023.1118745.
- Ryoo, J., et al. (2023), A meteorological overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) campaign over the southeastern Atlantic during 2016–2018: Part 2 – Daily and synoptic characteristics, Atmos. Chem. Phys., doi:10.5194/acp-22-14209-2022.
- Tornow, F., et al. (2022), Dilution of Boundary Layer Cloud Condensation Nucleus Concentrations by Free Tropospheric Entrainment During Marine Cold Air Outbreaks, Geophys. Res. Lett., 49, e2022GL09844, doi:10.1029/2022GL098444.
- Doherty, S., et al. (2021), Modeled and observed properties related to the direct aerosol radiative effect of biomass burning aerosol over the Southeast Atlantic, Atmos. Chem. Phys., doi:10.5194/acp-2021-333 (submitted).
- Pistone, K., et al. (2021), Exploring the elevated water vapor signal associated with the free tropospheric biomass burning plume over the southeast Atlantic Ocean, Atmos. Chem. Phys., 21, 9643-9668, doi:10.5194/acp-21-9643-2021.
- Pistone, K., et al. (2021), Exploring the elevated water vapor signal associated with the free-tropospheric biomass burning plume over the southeast Atlantic Ocean, Atmos. Chem. Phys., doi:10.5194/acp-2020-1322 (submitted).
- Ryoo, J., et al. (2021), A meteorological overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) campaign over the southeastern Atlantic during 2016–2018: Part 1 – Climatology, Atmos. Chem. Phys., 21, 16689-16707, doi:10.5194/acp-21-16689-2021.
- Seethala, C., et al. (2021), On Assessing ERA5 and MERRA2 Representations of Cold-Air Outbreaks Across the Gulf Stream, Geophys. Res. Lett..
- Zhang, J., and P. Zuidema (2021), Sunlight-absorbing aerosol amplifies the seasonal cycle in low cloud fraction over the southeast Atlantic, Atmos. Chem. Phys., doi:10.5194/acp-2021-275.
- Adebiyi, A., et al. (2020), Mid-level clouds are frequent above the southeast Atlantic stratocumulus clouds, Atmos. Chem. Phys., 1-28, doi:10.5194/acp-2020-324.
- Cochrane, S., et al. (2020), The Dependence of Aerosol Radiative Effects on Spectral Aerosol Properties Derived from Aircraft Measurements: Results from the ORACLES 2016 and ORACLES 2017 Experiments, Atmos. Chem. Phys. (manuscript in preparation).
- Ding, K., et al. (2020), Asian monsoon amplifies semi-direct effect of biomass burning aerosols on low cloud formation, EarthArXiv Preprint Ding et al..
- Kacarab, M., et al. (2020), Biomass Burning Aerosol as a Modulator of Droplet Number in the Southeast Atlantic Region, Atmos. Chem. Phys., 20, 3029-3040, doi:10.5194/acp-20-3029-2020.
- Shinozuka, Y., et al. (2020), Daytime aerosol optical depth above low-level clouds is similar to that in adjacent clear skies at the same heights: airborne observation above the southeast Atlantic, Atmos. Chem. Phys., doi:10.5194/acp-2019-1007 (submitted).
- Shinozuka, Y., et al. (2020), Modeling the smoky troposphere of the southeast Atlantic: a comparison to ORACLES airborne observations from September of 2016, Atmos. Chem. Phys., 20, 11491-11526, doi:10.5194/acp-20-11491-2020.
- Abel, S., et al. (2019), Open cells can decrease the mixing of free-tropospheric biomass burning aerosol into the south-east Atlantic boundary layer, Atmos. Chem. Phys., doi:10.5194/acp-2019-738 (submitted).
- Albrecht, B., et al. (2019), Cloud System Evolution In The Trades (Cset): Following Evolution of Boundary Layer Cloud Systems with the NSF-NCAR GV, Bull. Am. Meteorol. Soc., 100, 93-121, doi:10.1175/BAMS-D-17-0180.1.
- Mallet, M., et al. (2019), Simulation of the transport, vertical distribution, optical properties and radiative impact of smoke aerosols with the ALADIN regional climate model during the ORACLES-2016 and LASIC experiments, Atmos. Chem. Phys., 19, 4963-4990, doi:10.5194/acp-19-4963-2019.
- Zhang, J., and P. Zuidema (2019), The diurnal cycle of the smoky marine boundary layer observed during August in the remote southeast Atlantic, Atmos. Chem. Phys., 19, 14493-14516, doi:10.5194/acp-19-14493-2019.
- Adebiyi, A., and P. Zuidema (2018), Low Cloud Cover Sensitivity to Biomass-Burning Aerosols and Meteorology over the Southeast Atlantic, J. Climate, 31, 4329-4346, doi:10.1175/JCLI-D-17-0406.1.
- Wood, R., et al. (2018), Ultraclean Layers and Optically Thin Clouds in the Stratocumulus-to-Cumulus Transition. Part I: Observations, J. Atmos. Sci., 75, 1631-1652, doi:10.1175/JAS-D-17-0213.1.
- Adebiyi, A., and P. Zuidema (2016), The role of the southern African easterly jet in modifying the southeast Atlantic aerosol and cloud environments, Q. J. R. Meteorol. Soc., 142, 1574-1589, doi:10.1002/qj.2765.
- Adebiyi, A., P. Zuidema, and S. Abel (2015), The Convolution of Dynamics and Moisture with the Presence of Shortwave Absorbing Aerosols over the Southeast Atlantic, J. Climate, 28, 1997-2024, doi:10.1175/JCLI-D-14-00352.1.
- Fridlind, A. M., et al. (2012), A FIRE-ACE/SHEBA Case Study of Mixed-Phase Arctic Boundary Layer Clouds: Entrainment Rate Limitations on Rapid Primary Ice Nucleation Processes, J. Atmos. Sci., 69, 365-389, doi:10.1175/JAS-D-11-052.1.
- Morrison, H., et al. (2011), Intercomparison of cloud model simulations of Arctic mixed-phase boundary layer clouds observed during SHEBA/FIRE-ACE, J. Adv. Model. Earth Syst., 3, M06003, doi:10.1029/2011MS000066.
- Genkova, I., et al. (2007), Cloud top height comparisons from ASTER, MISR, and MODIS for trade wind cumuli, Remote Sensing of Environment, 107, 211-222, doi:10.1016/j.rse.2006.07.021.