Lazaros Oreopoulos
Organization:
NASA Goddard Space Flight Center
Email:
Business Phone:
Work:
(301) 614-6128
Mobile:
(240) 315-5533
Business Address:
NASA-GSFC
Earth Sciences Division
Code 613
Greenbelt, MD 20771
United StatesWebsite:
First Author Publications:
- Oreopoulos, L., N. Cho, and D. Lee (2017), Using MODIS cloud regimes to sort diagnostic signals of aerosol-cloud-precipitation interactions, J. Geophys. Res., 122, doi:10.1002/2016JD026120.
- Oreopoulos, L., N. Cho, and D. Lee (2017), New insights about cloud vertical structure from CloudSat and CALIPSO observations, J. Geophys. Res., 122, doi:10.1002/2017JD026629.
- Oreopoulos, L., N. Cho, and D. Lee (2017), New insights about cloud vertical structure from CloudSat and CALIPSO observations, J. Geophys. Res., 122, doi:10.1002/2017JD026629.
- Oreopoulos, L., et al. (2016), Radiative effects of global MODIS cloud regimes, J. Geophys. Res., 121, 2299-2317, doi:10.1002/2015JD024502.
- Oreopoulos, L., et al. (2014), An examination of the nature of global MODIS cloud regimes, J. Geophys. Res., 119, 8362-8383, doi:10.1002/2013JD021409.
- Oreopoulos, L., et al. (2012), Radiative impacts of cloud heterogeneity and overlap in an atmospheric General Circulation Model, Atmos. Chem. Phys., 12, 9097-9111, doi:10.5194/acp-12-9097-2012.
- Oreopoulos, L., and P. M. Norris (2011), An analysis of cloud overlap at a midlatitude atmospheric observation facility, Atmos. Chem. Phys., 11, 5557-5567, doi:10.5194/acp-11-5557-2011.
- Oreopoulos, L., and W. Rossow (2011), The cloud radiative effects of International Satellite Cloud Climatology Project weather states, J. Geophys. Res., 116, D12202, doi:10.1029/2010JD015472.
- Oreopoulos, L., et al. (2000), Cloud three-dimensional effects evidenced in Landsat spatial power spectra and autocorrelation functions, J. Geophys. Res., 105, 14777-14788.
Co-Authored Publications:
- Breen, K., et al. (2024), Abrupt reduction in shipping emission as an inadvertent geoengineering termination shock produces substantial radiative warming Check for updates 1,2 2,3 2 4 1,2 Tianle Yuan , Hua Song , Lazaros Oreopoulos , Robert Wood , Huisheng Bian ,, Nature, doi:10.1038/s43247-024-01442-3.
- Delgado-Bonal, A., et al. (2024), Global cloud optical depth daily variability based on DSCOVR/ EPIC observations, TYPE Original Research, doi:10.3389/frsen.2024.1390683.
- Jin, D., et al. (2024), ENSO Disrupts Boreal Winter CRE Feedback, J. Climate, 37, 585-603, doi:10.1175/JCLI-D-23-0282.1.
- Tan, I., et al. (2024), Contributions From Cloud Morphological Changes to the Interannual Shortwave Cloud Feedback Based on MODIS and ISCCP Satellite Observations, J. Geophys. Res., 129, e2023JD040540, doi:10.1029/2023JD040540.
- Jin, D., et al. (2021), Cloud-Precipitation Hybrid Regimes and Their Projection onto IMERG Precipitation Data, J. Appl. Meteor. Climat., 60, 733-748, doi:10.1175/JAMC-D-200253.s1.
- Kramer, R., et al. (2021), Observational evidence of increasing global radiative forcing, Geophys. Res. Lett., 48, e2020GL091585, doi:10.1029/2020GL091585.
- Delgado‐Bonal, A., et al. (2020), Daytime Variability of Cloud Fraction From DSCOVR/EPIC Observations, J. Geophys. Res., 125, 1-11, doi:10.1029/2019JD031488.
- Tan, I., L. Oreopoulos, and N. Cho (2019), The Role of Thermodynamic Phase Shifts in Cloud Optical Depth Variations With Temperature, Geophys. Res. Lett., 46, 4502-4511, doi:10.1029/2018GL081590.
- Tan, J., and L. Oreopoulos (2019), Subgrid Precipitation Properties of Mesoscale Atmospheric Systems Represented by MODIS Cloud Regimes, J. Climate, 32, 1797-1812, doi:10.1175/JCLI-D-18-0570.1.
- Jin, D., et al. (2018), Contrasting the co-variability of daytime cloud and precipitation over tropical land and ocean, Atmos. Chem. Phys., 18, 3065-3082, doi:10.5194/acp-18-3065-2018.
- Jin, D., L. Oreopoulos, and D. Lee (2017), Regime‑based evaluation of cloudiness in CMIP5 models Daeho Jin1,2 · Lazaros Oreopoulos2 · Dongmin Lee3,2 , Clim. Dyn., 48, 89-112, doi:10.1007/s00382-016-3064-0).
- Jin, D., L. Oreopoulos, and D. Lee (2017), Simplified ISCCP cloud regimes for evaluating cloudiness in CMIP5 models Daeho Jin1,2 · Lazaros Oreopoulos2 · Dongmin Lee2,3 , Clim. Dyn., 48, 113-130, doi:10.1007/s00382-016-3107-6).
- Tan, J., and L. Oreopoulos (2017), Evaluating rainfall errors in global climate models through cloud regimes Jackson Tan1,2 · Lazaros Oreopoulos1 · Christian Jakob3 · Daeho Jin1,2 , Clim. Dyn., 50, 3301-3314, doi:10.1007/s00382-017-3806-7).
- Leinonen, J., et al. (2016), Interregional differences in MODIS-derived cloud regimes, J. Geophys. Res., 121, doi:10.1002/2016JD025193.
- Yuan, T., et al. (2016), Positive low cloud and dust feedbacks amplify tropical North Atlantic Multidecadal Oscillation, Geophys. Res. Lett., 43, doi:10.1002/2016GL067679.
- Pincus, R., et al. (2015), Radiative flux and forcing parameterization error in aerosol-free clear skies, Geophys. Res. Lett., 42, 5485-5492, doi:10.1002/2015GL064291.
- Huang, X., et al. (2014), A Global Climatology of Outgoing Longwave Spectral Cloud Radiative Effect and Associated Effective Cloud Properties, J. Climate, 27, 7475-7492, doi:10.1175/JCLI-D-13-00663.1.
- Lee, D., et al. (2014), Modeling the influences of aerosols on pre-monsoon circulation and rainfall over Southeast Asia, Atmos. Chem. Phys., 14, 6853-6866, doi:10.5194/acp-14-6853-2014.
- Zhang, Z., et al. (2014), A novel method for estimating shortwave direct radiative effect of above-cloud aerosols using CALIOP and MODIS data, Atmos. Meas. Tech., 7, 1777-1789, doi:10.5194/amt-7-1777-2014.
- Huang, X., et al. (2013), Longwave Band-By-Band Cloud Radiative Effect and Its Application in GCM Evaluation, J. Climate, 26, 450-467, doi:10.1175/JCLI-D-12-00112.1.
- Lee, D., et al. (2013), The Precipitation Characteristics of ISCCP Tropical Weather States, J. Climate, 26, 772-788, doi:10.1175/JCLI-D-11-00718.1.
- Randles, C., et al. (2013), Intercomparison of shortwave radiative transfer schemes in global aerosol modeling: Results from the AeroCom Radiative Transfer Experiment, Atmos. Chem. Phys., 13, 2347-2379, doi:10.5194/acp-13-2347-2013.
- Yuan, T., and L. Oreopoulos (2013), On the global character of overlap between low and high clouds, Geophys. Res. Lett., 40, 5320-5326, doi:10.1002/grl.50871.
- Yuan, T., et al. (2012), Aerosol indirect effect on tropospheric ozone via lightning, J. Geophys. Res., 117, D18213, doi:10.1029/2012JD017723.
- Joiner, J., et al. (2009), Accurate satellite-derived estimates of the tropospheric ozone impact on the global radiation budget, Atmos. Chem. Phys., 9, 4447-4465, doi:10.5194/acp-9-4447-2009.
- Vasilkov, A. P., et al. (2009), Impact of tropospheric nitrogen dioxide on the regional radiation budget, Atmos. Chem. Phys., 9, 6389-6400, doi:10.5194/acp-9-6389-2009.
- Cahalan, B., et al. (2005), The I3RC: Bringing Together the Most Advanced Radiative Transfer Tools for Cloudy Atmospheres, Bull. Am. Meteorol. Soc., 1275-1293, doi:10.1175/BAMS-86-9-1275.