Laura Iraci
Organization:
NASA Ames Research Center
Email:
Business Phone:
Work:
(650) 604-0129
Business Address:
Mailstop 245-5
Moffett Field, CA 94035
United StatesFirst Author Publications:
- Iraci, L., et al. (2022), A Collection of Airborne Measurements and Analyses of Trace Gases Emitted From Multiple Fires in California, Earth and Space Science, 9, e2021EA002116, doi:10.1029/2021EA002116.
- Iraci, L., et al. (2015), Water Ice Cloud Formation on Mars is More Difficult than Presumed: Laboratory Studies of Ice Nucleation on Surrogate Materials, Icarus, 210, 985-991, doi:10.1016/j.icarus.2010.07.020.
- Iraci, L., et al. (2007), The acid catalyzed nitration of methanol: formation of methyl nitrate via aerosol chemistry, J. Atmos. Chem., 58, 253-266.
- Iraci, L., et al. (2005), Uptake of hypobromous acid (HOBr) by aqueous fulfuric acid solution: Low-temperature solubility and reaction, Atmos. Chem. Phys., 5, 1577-1587.
- Iraci, L., A. M. Essin, and D. M. Golden (2002), Solubility of methanol in low-temperature aqueous sulfuric acid and implications for atmospheric particle composition, J. Phys. Chem. A, 106, 4054-4060.
Co-Authored Publications:
- Pan, L. L., et al. (2024), East Asian summer monsoon delivers large abundances of very-short-lived organic chlorine substances to the lower stratosphere, Proc. Natl. Acad. Sci., doi:10.1073/pnas.2318716121.
- Parker, H. A., et al. (2023), Inferring the vertical distribution of CO and CO2 from TCCON total column values using the TARDISS algorithm, Atmos. Meas. Tech., 16, 2601-2625, doi:10.5194/amt-16-2601-2023.
- Hedelius, J. K., et al. (2021), Regional and Urban Column CO Trends and Anomalies as Observed by MOPITT Over 16 Years, J. Geophys. Res., 126, e2020JD033967, doi:10.1029/2020JD033967.
- Kumar Sha, et al. (2021), Validation of Methane and Carbon Monoxide from Sentinel-5 Precursor using TCCON and NDACC-IRWG stations, Atmos. Meas. Tech., doi:10.5194/amt-2021-36.
- Byrne, B., et al. (2020), 2 fluxes obtained by combining surface-based and 3 space-based atmospheric CO2 measurements, J. Geophys. Res., doi:10.1029/2019JD032029.
- Faloona, I. C., et al. (2020), The California Baseline Ozone Transport Study (CABOTS), Bull. Am. Meteorol. Soc., doi:10.1175/BAMS-D-18-0302.1.
- Langford, A., et al. (2020), Ozone Production in the Soberanes Smoke Haze: Implications for Air Quality in the San Joaquin Valley During the California Baseline Ozone Transport Study, J. Geophys. Res., 125, e2019JD031777, doi:10.1029/2019JD031777.
- Leifer, I., et al. (2020), Air pollution inputs to the Mojave Desert by fusing surface mobile and airborne in situ and airborne and satellite remote sensing: A case study of interbasin transport with numerical model validation, Atmos. Environ., 224, 117184, doi:10.1016/j.atmosenv.2019.117184.
- Nalli, N., et al. (2020), Validation of Carbon Trace Gas Profile Retrievals from the NOAA-Unique Combined Atmospheric Processing System for the Cross-Track Infrared Sounder, Remote Sens., 12, doi:10.3390/rs12193245.
- Reuter, M., et al. (2020), Ensemble-based satellite-derived carbon dioxide and methane column-averaged dry-air mole fraction data sets (2003–2018) for carbon and climate applications, Atmos. Meas. Tech., 13, 789-819, doi:10.5194/amt-13-789-2020.
- Ryoo, J., et al. (2020), Terrain Trapped Airflows and Precipitation Variability during an Atmospheric River Event, J. Hydrometeorology, 21, 355-375, doi:10.1175/JHM-D-19-0040.1.
- Yates, E., et al. (2020), The effect of an upwind non-attainment area on ozone in California’s Sierra Nevada Mountains, Atmos. Environ., 230, 117426, doi:10.1016/j.atmosenv.2020.117426.
- Hedelius, J. K., et al. (2019), Evaluation of MOPITT Version 7 joint TIR-NIR X-CO retrievals with TCCON, Atmos. Meas. Tech., 12, 5547-5572, doi:10.5194/amt-12-5547-2019.
- Langford, A., et al. (2019), Coordinated profiling of stratospheric intrusions and transported pollution 7 by the Tropospheric Ozone Lidar Network (TOLNet) and NASA Alpha Jet experiment (AJAX): Observations and comparison to HYSPLIT, RAQMS, and FLEXPART, Atmos. Environ., doi:10.1016/j.atmosenv.2017.11.031.
- Langford, A., et al. (2019), Intercomparison of lidar, aircraft, and surface ozone measurements in the San Joaquin Valley during the California Baseline Ozone Transport Study (CABOTS), Atmos. Meas. Tech., 12, 1889-1904, doi:10.5194/amt-12-1889-2019.
- Ryoo, J., et al. (2019), Quantification of CO2 and CH4 emissions over Sacramento, California, based on divergence theorem using aircraft measurements, Atmos. Meas. Tech., 12, 2949-2966, doi:10.5194/amt-12-2949-2019.
- Baker, K. R., et al. (2018), Photochemical model evaluation of 2013 California wild fire air quality impacts using surface, aircraft, and satellite data, Science of the Total Environment, 637–638, 1137-1149, doi:10.1016/j.scitotenv.2018.05.048.
- Hedelius, J. K., et al. (2018), Southern California megacity CO2, CH4, and CO flux estimates using ground- and space-based remote sensing and a Lagrangian model, Atmos. Chem. Phys., 18, 16271-16291, doi:10.5194/acp-18-16271-2018.
- Hedelius, J. K., et al. (2018), Southern California megacity CO2, CH4, and CO flux estimates using ground- and space-based remote sensing and a Lagrangian model, Ca, doi:https://doi.org/10.5194/acp-18-16271-2018.
- Hedelius, J. K., et al. (2018), Southern California megacity CO2, CH4, and CO flux estimates using ground- and space-based remote sensing and a Lagrangian model, Atmos. Chem. Phys., 18, 16271-16291, doi:10.5194/acp-18-16271-2018.
- O'Dell, C., et al. (2018), Improved retrievals of carbon dioxide from Orbiting Carbon Observatory-2 with the version 8 ACOS algorithm, Atmos. Meas. Tech., 11, 6539-6576, doi:10.5194/amt-11-6539-2018.
- Pollard, D. F., et al. (2018), Carbon dioxide retrieval from OCO-2 satellite observations using the RemoTeC algorithm and validation with TCCON measurements Lianghai Wu1 , Otto Hasekamp1 , Haili Hu1 , Jochen Landgraf1 , Andre Butz2,3 , Joost aan de Brugh1 , Ilse Aben1 ,, Atmos. Meas. Tech., 11, 3111-3130, doi:10.5194/amt-11-3111-2018.
- Ryoo, J., et al. (2017), Investigating sources of ozone over California using AJAX airborne measurements and models: Assessing the contribution from longrange transport, Atmos. Environ., 155, 53-67, doi:10.1016/j.atmosenv.2017.02.008.
- St. Clair, J. M., et al. (2017), A new non-resonant laser-induced fluorescence instrument for the airborne in situ measurement of formaldehyde, Atmos. Meas. Tech., 10, 4833-4844, doi:10.5194/amt-10-4833-2017.
- Tadic, J. M., et al. (2017), Elliptic Cylinder Airborne Sampling and Geostatistical Mass Balance Approach for Quantifying Local Greenhouse Gas Emissions, Environ. Sci. Technol., 51, 10012-10021, doi:10.1021/acs.est.7b03100.
- Wunch, D., et al. (2017), Comparisons of the Orbiting Carbon Observatory-2 (OCO-2) XCO2 measurements with TCCON, Atmos. Meas. Tech., 10, 2209-2238, doi:10.5194/amt-10-2209-2017.
- Yates, E., et al. (2017), An Assessment of Ground Level and Free Tropospheric Ozone Over California and Nevada, J. Geophys. Res., 122, 10,089-10,102, doi:.org/10.1002/2016JD026266.
- Dupuy, E., et al. (2016), Comparison of XH2O Retrieved from GOSAT Short-Wavelength Infrared Spectra with Observations from the TCCON Network, Remote Sens., 8, 414, doi:10.3390/rs8050414.
- Johnson, M. S., et al. (2016), Investigating seasonal methane emissions in Northern California using airborne measurements and inverse modeling, J. Geophys. Res., 121, doi:10.1002/2016JD025157.
- Kulawik, S., et al. (2016), Consistent evaluation of ACOS-GOSAT, BESD-SCIAMACHY, CarbonTracker, and MACC through comparisons to TCCON, Atmos. Meas. Tech., 9, 683-709, doi:10.5194/amt-9-683-2016.
- Tanaka, T. A., et al. (2016), Two-Year Comparison of Airborne Measurements of CO2 and CH4 With GOSAT at Railroad Valley, Nevada, IEEE Trans. Geosci. Remote Sens., 54, 4367-4375, doi:10.1109/TGRS.2016.2539973.
- Yates, E., et al. (2016), Airborne measurements and emission estimates of greenhouse gases and other trace constituents from the 2013 California Yosemite Rim wildfire, Atmos. Environ., 127, 293-302, doi:10.1016/j.atmosenv.2015.12.038.
- Fine, R., et al. (2015), Investigating the influence of long-range transport on surface O3 in Nevada, USA, using observations from multiple measurement platforms, Science of the Total Environment, 530, 493-504.
- Horowitz, L. W., et al. (2015), Revisiting the evidence of increasing springtime ozone mixing ratios in the free troposphere over western North America M Lin, Geophys. Res. Lett., 42, 8719-8728.
- Kawakami, S., et al. (2015), A Compact Automated FTS at the Desert Playa for Satellite Validation of the Total Column CO2 and CH4, OSA Fourier Transform Spectroscopy 2015 Proceedings, doi:10.1364/FTS.2015.FW3A.2.
- Lin, M., et al. (2015), Revisiting the evidence of increasing springtime ozone mixing ratios in the free troposphere over western North America, Geophys. Res. Lett., 42, doi:10.1002/2015GL065311.
- Johnson, M. S., et al. (2014), Analyzing source apportioned methane in northern California during Discover-AQ-CA using airborne measurements and model simulations, Atmos. Environ., 99, 248-256, doi:10.1016/j.atmosenv.2014.09.068.
- Rosenzweig, C., et al. (2014), Enhancing climate resilience at NASA centers: A collaboration between science and sewardship, Bull. Am. Meteorol. Soc., doi:/abs/10.1175/BAMS-D-12-00169.1 (submitted).
- Yates, E., et al. (2014), Characterizing the impacts of vertical transport and photochemical ozone production on an exceedance area, Atmos. Environ., In press, doi:10.1016/j.atmosenv.2014.09.002.
- Yates, E., et al. (2013), Airborne observations and modeling of springtime stratosphere-to-troposphere transport over California, Atmos. Chem. Phys., 13, 12481-12494, doi:10.5194/acp-13-12481-2013.
- Fishman, J., et al. (2012), The United States’ next generation of atmospheric composition and coastal ecosystem measurements NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission, Bull. Amer. Meteor. Soc., 93, 1547-1566.
- Fishman, J., et al. (2012), The United States’ Next Generation Of Atmospheric Composition And Coastal Ecosystem Measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission, Bull. Am. Meteorol. Soc., 1547-1566.
- Yates, E., et al. (2012), Assessing the role of alkaline soils on the carbon cycle at a playa site, Environ. Earth Sci., doi:10.1007/s12665-012-2194-x.
- Phebus, B. D., et al. (2011), Water ice nucleation characteristics of JSC Mars-1 regolith simulant under simulated Martian atmospheric conditions., J. Geophys. Res., 116, E04009, 1-E04009, 8, doi:10.1029/1010JE003699.
- Sulbaek Andersen, et al. (2011), Solubility of acetic acid and trifluoroacetic acid in low-temperature (207-245 K) sulfuric acid solutions: Implications for the upper troposphere and lower stratosphere, J. Phys. Chem. A, 115, 4388-4396.
- Yates, E., et al. (2011), Carbon Dioxide and Methane at a Desert Site—A Case Study at Railroad Valley Playa, Nevada, USA, Atmosphere, 2, 702-714, doi:10.3390/atmos2040702.
- Guan, H., et al. (2010), A multi-decadal history of biomass burning plume heights identified using aerosol index measurements, Atmos. Chem. Phys. Discuss., 10, 1-25.
- Williams, M. B., et al. (2010), Uptake of acetone, acetaldehyde and ethanol in cold, moderately acidic sulfuric acid solutions containing organic material: Carbon accretion mechanisms, Atmos. Environ., 44, 1145-1151.
- Michelsen, R. R., S. J. R. Staton, and L. Iraci (2006), Uptake and Dissolution of Gaseous Ethanol in Sulfuric Acid, J. Phys. Chem. A, 110, 6711-6717, doi:10.1021/jp056234s.
- Michelsen, R. R., S. F. M. Ashbourn, and L. Iraci (2004), Dissolution, speciation, and reaction of acetaldehyde in cold sulfuric acid, J. Geophys. Res., 109, D23205, doi:10.1029/2004JD005041.
- Tabazadeh, A., et al. (2004), Heterogeneous chemistry involving methanol in tropospheric clouds, Geophys. Res. Lett., 31, L06114, doi:10.1029/2003GL018775.
- Fortin, T. J., et al. (2003), Ice condensation on sulfuric acid tetrahydrate: Implications for polar stratospheric ice clouds ∗, Atmos. Chem. Phys., 3, 987-997, doi:10.5194/acp-3-987-2003.