Ilana B. Pollack
Organization:
Colorado State University
First Author Publications:
- Pollack, I. B., et al. (2019), Evaluation of ambient ammonia measurements from a research aircraft using a closed-path QC-TILDAS operated with active continuous passivation, Atmos. Meas. Tech., 12, 3717-3742, doi:10.5194/amt-12-3717-2019.
- Pollack, I. B., B. T. Lerner, and T. B. Ryerson (2011), Evaluation of ultraviolet light-emitting diodes for detection of atmospheric NO2 by photolysis-chemiluminescence, Journal of Atmospheric Chemistry, 65, 111-125, doi:10.1007/s10874-011-9184-3.
Co-Authored Publications:
- Pickering, K., et al. (2024), Lightning NOx in the 29–30 May 2012 Deep Convective Clouds and Chemistry (DC3) Severe Storm and Its Downwind Chemical Consequences, J. Geophys. Res., 129, e2023JD039439., doi:10.1029/2023JD039439.
- Shah, V., et al. (2023), Nitrogen oxides in the free troposphere: implications for tropospheric oxidants and the interpretation of satellite NO2 measurements, Atmos. Chem. Phys., doi:10.5194/acp-23-1227-2023.
- Shah, V., et al. (2023), Nitrogen oxides in the free troposphere: implications for tropospheric oxidants and the interpretation of satellite NO2 measurements, Atmos. Chem. Phys., doi:10.5194/acp-23-1227-2023.
- Schwantes, R., et al. (2022), Evaluating the Impact of Chemical Complexity and Horizontal Resolution on Tropospheric Ozone Over the Conterminous US With a Global Variable Resolution Chemistry Model, J. Adv. Modeling Earth Syst., 14, e2021MS002889, doi:10.1029/2021MS002889.
- Wolfe, G. M., et al. (2022), Photochemical evolution of the 2013 California Rim Fire: synergistic impacts of reactive hydrocarbons and enhanced oxidants, Atmos. Chem. Phys., doi:10.5194/acp-22-4253-2022.
- Francoeur, C., et al. (2021), Quantifying Methane and Ozone Precursor Emissions from Oil and Gas Production Regions across the Contiguous US, Environmental Science & Technology, 1-28, doi:10.1021/acs.est.0c07352.
- Nault, B., et al. (2021), Secondary organic aerosols from anthropogenic volatile organic compounds contribute substantially to air pollution mortality, Atmos. Chem. Phys., 21, 11201-11224, doi:10.5194/acp-21-11201-2021.
- Cuchiara, G. C., et al. (2020), Vertical Transport, Entrainment, and Scavenging Processes Affecting Trace Gases in a Modeled and Observed SEAC4RS Case Study, J. Geophys. Res., 125, doi:10.1029/2019JD031957.
- Brune, W. H., et al. (2018), Atmospheric oxidation in the presence of clouds during the Deep Convective Clouds and Chemistry (DC3) study, Atmos. Chem. Phys., 18, 14493-14510, doi:10.5194/acp-18-14493-2018.
- Li, J., et al. (2018), Decadal changes in summertime reactive oxidized nitrogen and surface ozone over the Southeast United States, Atmos. Chem. Phys., 18, 2341-2361, doi:10.5194/acp-18-2341-2018.
- Silvern, R. F., et al. (2018), Observed NO/NO2 Ratios in the Upper Troposphere Imply Errors in NO-NO2-O3 Cycling Kinetics or an Unaccounted NOx Reservoir, Geophys. Res. Lett..
- Liu, X., et al. (2017), Airborne measurements of western U.S. wildfire emissions: Comparison with prescribed burning and air quality implications, J. Geophys. Res., 122, 6108-6129, doi:10.1002/2016JD026315.
- Marvin, M. R., et al. (2017), Impact of evolving isoprene mechanisms on simulated formaldehyde: An inter-comparison supported by in situ observations from SENEX, Atmos. Environ., 164, 325-336, doi:10.1016/j.atmosenv.2017.05.049.
- Nault, B., et al. (2017), Lightning NOx Emissions: Reconciling Measured and Modeled Estimates With Updated NOx Chemistry, Geophys. Res. Lett., 44, 9479-9488, doi:10.1002/2017GL074436.
- Kim, S., et al. (2016), Modeling the weekly cycle of NOx and CO emissions and their impacts on O3 in the Los Angeles-South Coast Air Basin during the CalNex 2010 field campaign, J. Geophys. Res., 121, 1340-1360, doi:10.1002/2015JD024292.
- Liu, X., et al. (2016), Agricultural fires in the southeastern U.S. during SEAC4RS: Emissions of trace gases and particles and evolution of ozone, reactive nitrogen, and organic aerosol, J. Geophys. Res., 121, 7383-7414, doi:10.1002/2016JD025040.
- Nault, B., et al. (2016), Observational Constraints on the Oxidation of NOx in the Upper Troposphere, J. Phys. Chem. A, 120, 1468-1478, doi:10.1021/acs.jpca.5b07824.
- Travis, K., et al. (2016), Why do models overestimate surface ozone in the Southeast United States?, Atmos. Chem. Phys., 16, 13561-13577, doi:10.5194/acp-16-13561-2016.
- Wolfe, G. M., et al. (2016), Formaldehyde production from isoprene oxidation across NOx regimes, Atmos. Chem. Phys., 16, 2597-2610, doi:10.5194/acp-16-2597-2016.
- Apel, E., et al. (2015), Upper tropospheric ozone production from lightning NOx-impacted convection: Smoke ingestion case study from the DC3 campaign, J. Geophys. Res., 120, 2505-2523, doi:10.1002/2014JD022121.
- Barth, M. C., et al. (2015), The Deep Convective Clouds And Chemistry (Dc3) Field Campaign, Bull. Am. Meteorol. Soc., 1281-1310.
- Liao, J., et al. (2015), Airborne organosulfates measurements over the continental US, J. Geophys. Res., 120, 2990-3005, doi:10.1002/2014JD022378.
- Wolfe, G. M., et al. (2015), Quantifying sources and sinks of reactive gases in the lower atmosphere using airborne flux observations, Geophys. Res. Lett., 42, 8231-8240, doi:10.1002/2015GL065839.
- Cooper, O. R., et al. (2011), Measurement of western U.S. baseline ozone from the surface to the tropopause and assessment of downwind impact regions, J. Geophys. Res., 116, D00V03, doi:10.1029/2011JD016095.