Hans Schlager
Organization:
German Aerospace Center
Email:
Business Phone:
Mobile:
+49 173 7280142
Work:
+49 8153 28 ext. 2510
Business Address:
German Aerospace Center (DLR)
Oberpfaffenhofen
82234 Wessling
GermanyCo-Authored Publications:
- Deeter, M., et al. (2021), Impacts of MOPITT cloud detection revisions on observation frequency and mapping of highly polluted scenes, Remote Sensing of Environment, 262, 112516, doi:10.1016/j.rse.2021.112516.
- Deeter, M., et al. (2018), Satellite-Based Analysis of CO Seasonal and Interannual Variability Over the Amazon Basin, J. Geophys. Res., 0(, doi:10.1029/2018JD028425.
- Schumann, U., et al. (2017), Properties of individual contrails: a compilation of observations and some comparisons, Atmos. Chem. Phys., 17, 403-438, doi:10.5194/acp-17-403-2017.
- Ancellet, G., et al. (2016), Analysis of the latitudinal variability of tropospheric ozone in the Arctic using the large number of aircraft and ozonesonde observations in early summer 2008, Atmos. Chem. Phys., 16, 13341-13358, doi:10.5194/acp-16-13341-2016.
- Kremser, S., et al. (2016), Stratospheric aerosol—Observations, processes, and impact on climate, Rev. Geophys., 54, doi:10.1002/2015RG000511.
- Barth, M. C., et al. (2015), The Deep Convective Clouds And Chemistry (Dc3) Field Campaign, Bull. Am. Meteorol. Soc., 1281-1310.
- Monks, S. A., et al. (2015), Multi-model study of chemical and physical controls on transport of anthropogenic and biomass burning pollution to the Arctic, Atmos. Chem. Phys., 15, 3575-3603, doi:10.5194/acp-15-3575-2015.
- Law, K., et al. (2014), Arctic Air Pollution: New Insights from POLARCAT-IPY, Bull. Am. Meteorol. Soc. (submitted).
- Klonecki, A., et al. (2012), Assimilation of IASI satellite CO fields into a global chemistry transport model for validation against aircraft measurements, Atmos. Chem. Phys., 12, 4493-4512, doi:10.5194/acp-12-4493-2012.
- Pommier, M. K., et al. (2010), IASI carbon monoxide validation over Arctic during POLARCAT spring and summer campaigns, Atmos. Chem. Phys. Discuss., 10, 14445-14494.
- Tilmes, S., et al. (2010), An aircraft-based upper troposphere lower stratosphere O3, CO and H2O climatology for the Northern Hemisphere, J. Geophys. Res. (submitted).
- Cook, P. A., et al. (2007), 2007. Forest fire plumes over the North Atlantic: p-TOMCAT model simulations with aircraft and satellite measurements from the ITOP/ICARTT campaign, J. Geophys. Res., 112, D10S43, doi:10.1029/2006JD007563.
- Fehsenfeld, F., et al. (2006), International Consortium for Atmospheric Research on Transport and Transformation (ICARTT): North America to Europe: Overview of the 2004 summer field study, J. Geophys. Res., 111, D23S01, doi:10.1029/2006JD007829.
- Methven, et al. (2006), Establishing Lagrangian connections between observations within air masses crossing the Atlantic during the International Consortium for Atmospheric Research on Transport and Transformation experiment, J. Geophys. Res., 111, D23S62, doi:10.1029/2006JD007540.
- Tripathi, O. P., et al. (2006), High resolution simulation of recent Actic and Antarctic stratospheric chemical ozone loss compared to observations, J. Atmos. Chem., 3, 205-226.
- Thompson, A. M., H. Singh, and H. Schlager (2000), Introduction to special section: Subsonic Assessment Ozone and Nitrogen Oxide Experiment (SONEX) and Pollution from Aircraft Emissions in the North Atlantic Flight Corridor (POLINAT 2), J. Geophys. Res., 105, 3595-3603.
- Singh, H., A. M. Thompson, and H. Schlager (1999), SONEX airborne mission and coordinated POLINAT-2 activity: Overview and accomplishments, Geophys. Res. Lett., 26, 3053-3056.