Annmarie Eldering
Organization:
Jet Propulsion Laboratory
Email:
Business Address:
California Institute of Technology
Pasadena, CA
United StatesFirst Author Publications:
- Eldering, A., et al. (2019), The OCO-3 mission: measurement objectives and expected performance based on 1 year of simulated data, Atmos. Meas. Tech., 12, 2341-2370, doi:10.5194/amt-12-2341-2019.
- Eldering, A., et al. (2017), R ES E A RC H | R E MO T E S E NS I NG, Science, 358, eaam5745, doi:10.1126/science.aam5745.
- Eldering, A., et al. (2017), The Orbiting Carbon Observatory‐2 early science investigations of regional carbon dioxide fluxes, Science, 358, eaam5745.
- Eldering, A., et al. (2017), The Orbiting Carbon Observatory-2: first 18 months of science data products, Atmos. Meas. Tech., 10, 549-563, doi:10.5194/amt-10-549-2017.
Co-Authored Publications:
- Peiro, H., et al. (2022), Four years of global carbon cycle observed from the Orbiting Carbon Observatory 2 (OCO-2) version 9 and in situ data and comparison to OCO-2 version 7, Atmos. Chem. Phys., doi:10.5194/acp-22-1097-2022.
- Yu, S., et al. (2020), Stability Assessment of OCO-2 Radiometric Calibration Using Aqua MODIS as a Reference, Remote Remote Sens., 2020, 1269, doi:10.3390/rs12081269.
- Crowell, S., et al. (2019), The 2015–2016 carbon cycle as seen from OCO-2 and the global in situ network, Atmos. Chem. Phys., 19, 9797-9831, doi:10.5194/acp-19-9797-2019.
- Fu, D., et al. (2019), Direct retrieval of isoprene from satellite-based infrared measurements, Nature Communications, doi:10.1038/s41467-019-11835-0.
- Kiel, M., et al. (2019), How bias correction goes wrong: measurement of XCO2 affected by erroneous surface pressure estimates, Atmos. Meas. Tech., 12, 2241-2259, doi:10.5194/amt-12-2241-2019.
- Fu, D., et al. (2018), Retrievals of tropospheric ozone profiles from the synergism of AIRS and OMI: methodology and validation, Atmos. Meas. Tech., 11, 5587-5605, doi:10.5194/amt-11-5587-2018.
- O'Dell, C., et al. (2018), Improved retrievals of carbon dioxide from Orbiting Carbon Observatory-2 with the version 8 ACOS algorithm, Atmos. Meas. Tech., 11, 6539-6576, doi:10.5194/amt-11-6539-2018.
- Chatterjee, A., et al. (2017), R ES E A RC H | R E MO T E S E NS I NG, Science, 358, eaam5776, doi:10.1126/science.aam5776.
- Crisp, D., et al. (2017), The on-orbit performance of the Orbiting Carbon Observatory-2 (OCO-2) instrument and its radiometrically calibrated products, Atmos. Meas. Tech., 10, 59-81, doi:10.5194/amt-10-59-2017.
- Massie, S., et al. (2017), Observational evidence of 3-D cloud effects in OCO-2 CO2 retrievals, J. Geophys. Res., 122, 7064-7085, doi:10.1002/2016JD026111.
- Verma, M., et al. (2017), Effect of environmental conditions on the relationship between solar-induced fluorescence and gross primary productivity at an OzFlux grassland site, J. Geophys. Res., 122, 716-733, doi:10.1002/2016JG003580.
- Worden, J., et al. (2017), Evaluation and attribution of OCO-2 XCO2 uncertainties, Atmos. Meas. Tech., 10, 2759-2771, doi:10.5194/amt-10-2759-2017.
- Wunch, D., et al. (2017), Comparisons of the Orbiting Carbon Observatory-2 (OCO-2) XCO2 measurements with TCCON, Atmos. Meas. Tech., 10, 2209-2238, doi:10.5194/amt-10-2209-2017.
- Taylor, T. E., et al. (2016), Orbiting Carbon Observatory-2 (OCO-2) cloud screening algorithms: validation against collocated MODIS and CALIOP data, Atmos. Meas. Tech., 9, 973-989, doi:10.5194/amt-9-973-2016.
- Ott, L., et al. (2015), Assessing the magnitude of CO2 flux uncertainty in atmospheric CO2 records using products from NASA’s Carbon Monitoring Flux Pilot Project, J. Geophys. Res., 120, 734-765, doi:10.1002/2014JD022411.
- Hache, E., et al. (2014), The added value of a visible channel to a geostationary thermal infrared instrument to monitor ozone for air quality, Atmos. Meas. Tech., 7, 2185-2201, doi:10.5194/amt-7-2185-2014.
- Sanghavi, S. N., A. B. Davis, and A. Eldering (2014), vSmartMOM: A vector matrix operator method-based radiative transfer model linearized with respect to aerosol properties, J. Quant. Spectrosc. Radiat. Transfer, 133, 412-433, doi:10.1016/j.jqsrt.2013.09.004.
- Fishman, J., et al. (2012), The United States’ next generation of atmospheric composition and coastal ecosystem measurements NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission, Bull. Amer. Meteor. Soc., 93, 1547-1566.
- Fishman, J., et al. (2012), The United States’ Next Generation Of Atmospheric Composition And Coastal Ecosystem Measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission, Bull. Am. Meteorol. Soc., 1547-1566.
- Lee, J., et al. (2011), Relating tropical ocean clouds to moist processes using water vapor isotope measurements, Atmos. Chem. Phys., 11, 741-752, doi:10.5194/acp-11-741-2011.
- Liang, C. K., et al. (2011), Record of tropical interannual variability of temperature and water vapor from a combined AIRS‐MLS data set, J. Geophys. Res., 116, D06103, doi:10.1029/2010JD014841.
- Natraj, V., et al. (2011), Multi-spectral sensitivity studies for the retrieval of tropospheric and lowermost tropospheric ozone from simulated clear-sky GEO-CAPE measurements, Atmos. Environ., 45, 7151-7165, doi:10.1016/j.atmosenv.2011.09.014.
- Zoogman, P., et al. (2011), Ozone air quality measurement requirements for a geostationary satellite mission, Atmos. Environ., 45, 7143-7150, doi:10.1016/j.atmosenv.2011.05.058.
- Kopacz, M., et al. (2010), Global estimates of CO sources with high resolution by adjoint inversion of multiple satellite datasets (MOPITT, AIRS, SCIAMACHY, TES), Atmos. Chem. Phys., 10, 855-876, doi:10.5194/acp-10-855-2010.
- Schreier, M. M., et al. (2010), Radiance Comparisons of MODIS and AIRS Using Spatial Response Information, J. Atmos. Oceanic Technol., 27, 1331-1342, doi:10.1175/2010JTECHA1424.1.
- Zhang, L., et al. (2010), Intercomparison methods for satellite measurements of atmospheric composition: application to tropospheric ozone from TES and OMI, Atmos. Chem. Phys., 10, 4725-4739, doi:10.5194/acp-10-4725-2010.
- Kahn, B., et al. (2009), Cloudy and clear-sky relative humidity in the upper troposphere observed by the A-train, J. Geophys. Res., 114, D00H02, doi:10.1029/2009JD011738.
- Fetzer, E. J., et al. (2008), Comparison of upper tropospheric water vapor observations from the Microwave Limb Sounder and Atmospheric Infrared Sounder, J. Geophys. Res., 113, D22110, doi:10.1029/2008JD010000.
- Kahn, B., et al. (2008), Cloud type comparisons of AIRS, CloudSat, and CALIPSO cloud height and amount, Atmos. Chem. Phys., 8, 1231-1248, doi:10.5194/acp-8-1231-2008.
- Kahn, B., et al. (2007), Toward the characterization of upper tropospheric clouds using Atmospheric Infrared Sounder and Microwave Limb Sounder observations, J. Geophys. Res., 112, D05202, doi:10.1029/2006JD007336.
- Kahn, B., et al. (2007), The radiative consistency of Atmospheric Infrared Sounder and Moderate Resolution Imaging Spectroradiometer cloud retrievals, J. Geophys. Res., 112, D09201, doi:10.1029/2006JD007486.
- Kalashnikova, O. V., et al. (2007), Application of satellite and ground-based data to investigate the UV radiative effects of Australian aerosols, Remote Sensing of Environment, 107, 65-80, doi:10.1016/j.rse.2006.07.025.
- Worden, J., et al. (2007), Improved tropospheric ozone profile retrievals using OMI and TES radiances, Geophys. Res. Lett., 34, L01809, doi:10.1029/2006GL027806.
- Gettelman, A., et al. (2006), The Global Distribution of Supersaturation in the Upper Troposphere from the Atmospheric Infrared Sounder, J. Climate, 19, 6089-6103.
- Gettelman, A., et al. (2006), Climatology of Upper-Tropospheric Relative Humidity from the Atmospheric Infrared Sounder and Implications for Climate, J. Climate, 19, 6104-6121.
- Zhang, L., et al. (2006), Ozone-CO correlations determined by the TES satellite instrument in continental outflow regions, Geophys. Res. Lett., 33, L18804, doi:10.1029/2006GL026399.
- Kahn, B., et al. (2005), Nighttime cirrus detection using Atmospheric Infrared Sounder window channels and total column water vapor, J. Geophys. Res., 110, D07203, doi:10.1029/2004JD005430.