Organization
NASA Goddard Space Flight Center
Email
Business Phone
Work
(301) 614-6123
Business Address
NASA-Goddard Space Flight Center
Code 613
Greenbelt, MD 20771
United States
First Author Publications
-
Levy, R., et al. (2018), Exploring systematic offsets between aerosol products from the two MODIS sensors, Atmos. Meas. Tech., 11, 4073-4092, doi:10.5194/amt-11-4073-2018.
-
Levy, R., et al. (2010), Global evaluation of the Collection 5 MODIS dark-target aerosol products over land, Atmos. Chem. Phys., 10, 10399-10420, doi:10.5194/acp-10-10399-2010.
-
Levy, R., et al. (2009), A Critical Look at Deriving Monthly Aerosol Optical Depth From Satellite Data, IEEE Trans. Geosci. Remote Sens., 47, 2942-2956, doi:10.1109/TGRS.2009.2013842.
-
Levy, R., et al. (2007), Second-generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance, J. Geophys. Res., 112, D13211, doi:10.1029/2006JD007811.
-
Levy, R., et al. (2007), Global aerosol optical properties and application to Moderate Resolution Imaging Spectroradiometer aerosol retrieval over land, J. Geophys. Res., 112, D13210, doi:10.1029/2006JD007815.
-
Levy, R., et al. (2005), Evaluation of the MODIS Aerosol Retrievals over Ocean and Land during CLAMS, J. Atmos. Sci., 62, 974-992.
-
Levy, R., et al. (2004), Effects of Neglecting Polarization on the MODIS Aerosol Retrieval Over Land, IEEE Trans. Geosci. Remote Sens., 42, 2576-2583, doi:10.1109/TGRS.2004.837336.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.
Co-Authored Publications
-
Gumber, A., et al. (2023), Assessment of severe aerosol events from NASA MODIS and VIIRS aerosol products for data assimilation and climate continuity, Atmos. Meas. Tech., 16, 2547-2573, doi:10.5194/amt-16-2547-2023.
-
Hammer, M.S., et al. (2023), Assessment of the impact of discontinuity in satellite instruments and retrievals on global PM2.5 estimates, Remote Sensing of Environment, 294, 113624, doi:10.1016/j.rse.2023.113624.
-
Kahn, R., et al. (2023), Reducing Aerosol Forcing Uncertainty by Combining Models With Satellite and Within-The-Atmosphere Observations: A Three-Way Street, Rev. Geophys., 61, e2022RG000796, doi:10.1029/2022RG000796.
-
Bian, Q., et al. (2022), Constraining Aerosol Phase Function Using Dual-View Geostationary Satellites, J. Geophys. Res..
-
Bian, Q., et al. (2022), Constraining Aerosol Phase Function Using Dual-View Geostationary Satellites, J. Geophys. Res..
-
Buchholz, R., et al. (2022), New seasonal pattern of pollution emerges from changing North American wildfires, Nat Commun, 13, 2043, doi:10.1038/s41467-022-29623-8.
-
Reid, J.S., et al. (2022), A Coupled Evaluation of Operational MODIS and Model Aerosol Products for Maritime Environments Using Sun Photometry: Evaluation of the Fine and Coarse Mode, Evaluation of the Fine and Coarse Mode. Remote Sens., 14, 2978, doi:10.3390/rs14132978.
-
van Donkelaar, A., et al. (2022), Monthly Global Estimates of Fine Particulate Matter and Their Uncertainty, Environ. Sci. Technol., doi:10.1021/acs.est.1c05309.
-
Zhang, H., et al. (2022), Improving Surface PM2.5 Forecasts in the United States Using an Ensemble of Chemical Transport Model Outputs: 2. Bias Correction With Satellite Data for Rural Areas, J. Geophys. Res., 127, e2021JD035563, doi:10.1029/2021JD035563.
-
Buchholz, R., et al. (2021), Air pollution trends measured from Terra: CO and AOD over industrial, fire-prone, and background regions, Remote Sensing of Environment, 256, 112275, doi:10.1016/j.rse.2020.112275.
-
Hammer, M.S., et al. (2021), The Authors, some Effects of COVID-19 lockdowns on fine particulate rights reserved; exclusive licensee matter concentrations American Association for the Advancement of Science. No claim to, Hammer et al., Sci. Adv., 7, eabg7670.
-
Wang, Y., et al. (2021), First Retrieval of AOD at Fine Resolution Over Shallow and Turbid Coastal Waters From MODIS, Geophys. Res. Lett., 48, e2021GL094344, doi:https://doi.org/10.1029/2021GL094344.
-
Yu, H., et al. (2021), Observation and modeling of the historic “Godzilla” African dust intrusion into the Caribbean Basin and the southern US in June 2020, Atmos. Chem. Phys., 21, 12359-12383, doi:10.5194/acp-21-12359-2021.
-
Hammer, M.S., et al. (2020), Improved Global Estimates of Fine Particulate Matter Concentrations and Trends Derived from Updated Satellite Retrievals, Modeling Advances, and Additional Ground-Based Monitors, Environ. Sci. Tech., 54, 7879-7890, doi:10.1021/acs.est.0c01764.
-
Sogacheva, L., et al. (2020), Merging regional and global aerosol optical depth records from major available satellite products, Atmos. Chem. Phys., 20, 2031-2056, doi:10.5194/acp-20-2031-2020.
-
Yu, H., et al. (2020), Interannual variability and trends of combustion aerosol and dust in major continental outflows revealed by MODIS retrievals and CAM5 simulations during 2003–2017, Atmos. Chem. Phys., 20, 139-161, doi:10.5194/acp-20-139-2020.
-
Remer, L., et al. (2019), Retrieving Aerosol Characteristics From the PACE Mission, Part 2: Multi-Angle and Polarimetry, Multi-Angle and Polarimetry. Front. Environ. Sci., 7, 94, doi:10.3389/fenvs.2019.00094.
-
Remer, L., et al. (2019), Retrieving Aerosol Characteristics From the PACE Mission, Part 1: Ocean Color Instrument, Ocean Color Instrument. Front. Earth Sci., 7, 152, doi:10.3389/feart.2019.00152.
-
Spencer, R.S., et al. (2019), Exploring Aerosols Near Clouds With High‐Spatial‐ Resolution Aircraft Remote Sensing During SEAC4RS, J. Geophys. Res..
-
Yu, H., et al. (2019), Estimates of African Dust Deposition Along the Trans‐ Atlantic Transit Using the Decadelong Record of Aerosol Measurements from CALIOP, MODIS, MISR, and IASI, J. Geophys. Res., 124, 7975-7996, doi:10.1029/2019JD030574.
-
Wang, J., et al. (2017), Article MODIS Retrieval of Aerosol Optical Depth over Turbid Coastal Water, www.mdpi.com/journal/remotesensing, 9, 595, doi:10.3390/rs9060595.
-
Alexandrov, M.D., et al. (2016), New Statistical Model for Variability of Aerosol Optical Thickness: Theory and Application to MODIS Data over Ocean*, J. Atmos. Sci., 73, 821-837, doi:10.1175/JAS-D-15-0130.1.
-
van Donkelaar, A., et al. (2016), Global Estimates of Fine Particulate Matter using a Combined Geophysical-Statistical Method with Information from Satellites, Models, and Monitors, Environ. Sci. Technol., 50, 3762-3772, doi:10.1021/acs.est.5b05833.
-
Wen, G., et al. (2016), Testing the two-layer model for correcting near-cloud reflectance enhancement using LES/SHDOM-simulated radiances, J. Geophys. Res., 121, 9661-9674, doi:10.1002/2016JD025021.
-
Chin, M., et al. (2014), Multi-decadal aerosol variations from 1980 to 2009: a perspective from observations and a global model, Atmos. Chem. Phys., 14, 3657-3690, doi:10.5194/acp-14-3657-2014.
-
Colarco, P.R., et al. (2014), Impact of satellite viewing-swath width on global and regional aerosol optical thickness statistics and trends, Atmos. Meas. Tech., 7, 2313-2335, doi:10.5194/amt-7-2313-2014.
-
Livingston, J.M., et al. (2014), Comparison of MODIS 3 km and 10 km resolution aerosol optical depth retrievals over land with airborne sunphotometer measurements during ARCTAS summer 2008, Atmos. Chem. Phys., 14, 2015-2038, doi:10.5194/acp-14-2015-2014.
-
Matsui, T., et al. (2014), Current And Future Perspectives Of Aerosol Research At Nasa Goddard Space Flight Center, Bull. Am. Meteorol. Soc., 1-5, doi:10.1175/BAMS-D-13-00153.1.
-
Kessner, A.L., et al. (2013), Remote sensing of surface visibility from space: A look at the United States East Coast, Atmos. Environ., 81, 136-147, doi:10.1016/j.atmosenv.2013.08.050.
-
Livingston, J.M., et al. (2013), Comparison of MODIS 3 km and 10 km resolution aerosol optical depth retrievals over land with airborne sunphotometer measurements during ARCTAS summer 2008, Atmos. Chem. Phys. Discuss., 13, 15007-15059.
-
Munchak, L.A., et al. (2013), MODIS 3 km aerosol product: applications over land in an urban/suburban region, Atmos. Meas. Tech., 6, 1747-1759, doi:10.5194/amt-6-1747-2013.
-
van Donkelaar, A., et al. (2013), Optimal estimation for global ground-level fine particulate matter concentrations, J. Geophys. Res., 118, 5621-5636, doi:10.1002/jgrd.50479.
-
Wen, G., et al. (2013), Improvement of MODIS aerosol retrievals near clouds, J. Geophys. Res., 118, 1-14, doi:10.1002/jgrd.50617.
-
Gatebe, C., et al. (2012), Atmospheric Chemistry over Southern Africa Changing Chemistry in a Changing Climate: Human and Natural Impacts over the Southern Africa Region (C4-SAR), Eos Trans. AGU, 93, 110, doi:10.1029/2012EO100008.
-
Remer, L., et al. (2012), Retrieving aerosol in a cloudy environment: aerosol product availability as a function of spatial resolution, Atmos. Meas. Tech., 5, 1823-1840, doi:10.5194/amt-5-1823-2012.
-
Zhang, Y., et al. (2012), Aerosol daytime variations over North and South America derived from multiyear AERONET measurements, J. Geophys. Res., 117, D05211, doi:10.1029/2011JD017242.
-
Kahn, R., et al. (2011), Response to ‘‘Toward unified satellite climatology of aerosol properties. 3. MODIS versus MISR versus AERONET’’, J. Quant. Spectrosc. Radiat. Transfer, 112, 901-909, doi:10.1016/j.jqsrt.2010.11.001.
-
Witte, J.C., et al. (2011), NASA A-Train and Terra observations of the 2010 Russian wildfires, Atmos. Chem. Phys., 11, 9287-9301, doi:10.5194/acp-11-9287-2011.
-
van Donkelaar, A., et al. (2010), Global Estimates of Ambient Fine Particulate Matter Concentrations from Satellite-Based Aerosol Optical Depth: Development and Application, Research, 118, 847-855, doi:).
-
Kahn, R., et al. (2009), MISR Aerosol Product Attributes and Statistical Comparisons With MODIS, IEEE Trans. Geosci. Remote Sens., 47, 4095-4114, doi:10.1109/TGRS.2009.2023115.
-
Redemann, J., et al. (2009), Testing aerosol properties in MODIS Collection 4 and 5 using airborne sunphotometer observations in INTEX-B/MILAGRO, Atmos. Chem. Phys., 9, 8159-8172, doi:10.5194/acp-9-8159-2009.
-
Livingston, J.M., et al. (2008), Comparison of MODIS 3 km and 10 km resolution aerosol optical depth retrievals over land with airborne sunphotometer measurements during ARCTAS summer, Atmos. Chem. Phys., 14, 2015-2038, doi:10.5194/acp-14-2015-2014.
-
Remer, L., et al. (2008), Global aerosol climatology from the MODIS satellite sensors, J. Geophys. Res., 113, D14S07, doi:10.1029/2007JD009661.
-
Kahn, R., et al. (2007), Satellite-derived aerosol optical depth over dark water from MISR and MODIS: Comparisons with AERONET and implications for climatological studies, J. Geophys. Res., 112, D18205, doi:10.1029/2006JD008175.
-
Redemann, J., et al. (2005), Suborbital measurements of spectral aerosol optical depth and its variability at sub-satellite grid scales in support of CLAMS, 2001, J. Atmos. Sci., 62, 993-1007, doi:10.1175/JAS3387.1.
-
Chin, M., et al. (2004), Aerosol distribution in the Northern Hemisphere during ACE-Asia: Results from global model, satellite observations, and Sun photometer measurements, J. Geophys. Res., 109, D23S90, doi:10.1029/2004JD004829.
-
Colarco, P.R., et al. (2003), Saharan dust transport to the Caribbean during PRIDE: 2. Transport, vertical profiles, and deposition in simulations of in situ and remote sensing observations, J. Geophys. Res., 108, 8590, doi:10.1029/2002JD002659.
-
Livingston, J.M., et al. (2003), Airborne sunphotometer measurements of aerosol optical depth and columnar water vapor during the Puerto Rico Dust Experiment, and comparison with land, aircraft, and satellite measurements, J. Geophys. Res., 108, D19, doi:10.1029/2002JD002520.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.