Douglas Worsnop
Organization:
Aerodyne Research, Inc.
Email:
Business Address:
45 Manning Rd.
Billerica, MA 01821
United StatesCo-Authored Publications:
- Hu, W., et al. (2020), Ambient Quantification and Size Distributions for Organic Aerosol in Aerosol Mass Spectrometers with the New Capture Vaporizer, Anal. Chem., 676, 676−689, doi:10.1021/acsearthspacechem.9b00310.
- Hu, W., et al. (2018), Evaluation of the New Capture Vaporizer for Aerosol Mass Spectrometers (AMS): Elemental Composition and Source Apportionment of Organic Aerosols (OA), Anal. Chem., 2, 410−421, doi:10.1021/acsearthspacechem.8b00002.
- Hu, W., et al. (2017), Evaluation of the new Capture Vaporizer for Aerosol Mass Spectrometers (AMS) through field studies of inorganic species, Aerosol Sci. Tech., doi:10.1080/02786826.2017.1296104.
- Hu, W., et al. (2017), Evaluation of the new capture vapourizer for aerosol mass spectrometers (AMS) through laboratory studies of inorganic species, Atmos. Meas. Tech., 10, 2897-2921.
- Kahn, R., et al. (2017), SAM-CAAM: A Concept for Acquiring Systematic Aircraft Measurements to Characterize Aerosol Air Masses, Bull. Am. Meteoro. Soc., 2215-2228, doi:10.1175/BAMS-D-16-0003.1.
- Collier, S., et al. (2016), Regional Influence of Aerosol Emissions from Wildfires Driven by Combustion Efficiency: Insights from the BBOP Campaign, Environ. Sci. Technol., 50, 8613-8622, doi:10.1021/acs.est.6b01617.
- Pieber, S. M., et al. (2016), Inorganic Salt Interference on CO2+ in Aerodyne AMS and ACSM Organic Aerosol Composition Studies, Environ. Sci. Technol., 50, 10494-10503, doi:10.1021/acs.est.6b01035.
- Canagaratna, M. R., et al. (2015), Elemental ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, and implications, Atmos. Chem. Phys., 15, 253-272, doi:10.5194/acp-15-253-2015.
- Pajunoja, A., et al. (2015), Adsorptive uptake of water by semisolid secondary organic aerosols, Geophys. Res. Lett., 42, 3063-3068, doi:10.1002/2015GL063142.
- Sipilä, M., et al. (2014), Reactivity of stabilized Criegee intermediates (sCIs) from isoprene and monoterpene ozonolysis toward SO2 and organic acids, Atmos. Chem. Phys., 14, 12143-12153, doi:10.5194/acp-14-12143-2014.
- Zaveri, R. A., et al. (2012), Overview of the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES), Atmos. Chem. Phys., 12, 7647-7687, doi:10.5194/acp-12-7647-2012.
- Docherty, K. S., et al. (2011), The 2005 Study of Organic Aerosols at Riverside (SOAR-1): instrumental intercomparisons and fine particle composition, Atmos. Chem. Phys., 11, 12387-12420, doi:10.5194/acp-11-12387-2011.
- Farmer, D. K., et al. (2011), Eddy covariance measurements with high-resolution time-of-flight aerosol mass spectrometry: a new approach to chemically resolved aerosol fluxes, Atmos. Meas. Tech., 4, 1275-1289, doi:10.5194/amt-4-1275-2011.
- Kimmel, J. R., et al. (2011), Real-time aerosol mass spectrometry with millisecond resolution, International Journal of Mass Spectrometry, 303, 15-26, doi:10.1016/j.ijms.2010.12.004.
- Ng, N. L., et al. (2011), Real-Time Methods for Estimating Organic Component Mass Concentrations from Aerosol Mass Spectrometer Data, Environ. Sci. Technol., 45, 910-916, doi:10.1021/es102951k.
- Robinson, C. B., et al. (2011), Thermal desorption metastable atom bombardment ionization aerosol mass spectrometer, International Journal of Mass Spectrometry, 303, 164-172, doi:10.1016/j.ijms.2011.01.027.
- Aiken, A. C., et al. (2009), Mexico City aerosol analysis during MILAGRO using high resolution aerosol mass spectrometry at the urban supersite (T0) – Part 1: Fine particle composition and organic source apportionment, Atmos. Chem. Phys., 9, 6633-6653, doi:10.5194/acp-9-6633-2009.
- de Gouw, J. A., et al. (2009), Emission and chemistry of organic carbon in the gas and aerosol phase at a sub-urban site near Mexico City in March 2006 during the MILAGRO study, Atmos. Chem. Phys., 9, 3425-3442, doi:10.5194/acp-9-3425-2009.
- Huffman, J. A., et al. (2009), Chemically-resolved aerosol volatility measurements from two megacity field studies, Atmos. Chem. Phys., 9, 7161-7182, doi:10.5194/acp-9-7161-2009.
- Jimenez-Palacios, J., et al. (2009), Evolution of Organic Aerosols in the Atmosphere, Science, 326, 1525-1529, doi:10.1126/science.1180353.
- Shilling, J. E., et al. (2009), Loading-dependent elemental composition of α-pinene SOA particles, Atmos. Chem. Phys., 9, 771-782, doi:10.5194/acp-9-771-2009.
- Ulbrich, I., et al. (2009), Interpretation of organic components from Positive Matrix Factorization of aerosol mass spectrometric data, Atmos. Chem. Phys., 9, 2891-2918, doi:10.5194/acp-9-2891-2009.
- Aiken, A. C., et al. (2008), O/C and OM/OC Ratios of Primary, Secondary, and Ambient Organic Aerosols with High-Resolution Time-of-Flight Aerosol Mass Spectrometry, Environ. Sci. Technol., 42, 4478-4485, doi:10.1021/es703009q.
- Heald, C. L., et al. (2008), Total observed organic carbon (TOOC) in the atmosphere: a synthesis of North American observations, Atmos. Chem. Phys., 8, 2007-2025, doi:10.5194/acp-8-2007-2008.
- Heald, C. L., et al. (2008), Total observed organic carbon (TOOC) in the atmosphere: a synthesis of North American observations, Atmos. Chem. Phys., 8, 2007-2025.
- Huffman, J. A., et al. (2008), Development and Characterization of a Fast-Stepping/Scanning Thermodenuder for Chemically-Resolved Aerosol Volatility Measurements, Aerosol Science and Technology, 42, 395-407, doi:10.1080/02786820802104981.
- Nemitz, E., et al. (2008), An Eddy-Covariance System for the Measurement of Surface/Atmosphere Exchange Fluxes of Submicron Aerosol Chemical Species—First Application Above an Urban Area, Aerosol Science and Technology, 42, 636-657, doi:10.1080/02786820802227352.
- Canagaratna, M. R., et al. (2007), Chemical and Microphysical Characterization of Ambient Aerosols with the Aerodyne Aerosol Mass Spectrometer, Mass Spectrometry Reviews, 26, 185-222, doi:10.1002/mas.20115.
- Crosier, J., et al. (2007), Technical Note: Description and Use of the New Jump Mass Spectrum Mode of Operation for the Aerodyne Quadrupole Aerosol Mass Spectrometers (Q-AMS), Aerosol Science and Technology, 41, 865-872, doi:10.1080/02786820701501899.
- Gao, R., et al. (2007), A Novel Method for Estimating Light-Scattering Properties of Soot Aerosols Using a Modified Single-Particle Soot Photometer, Aerosol Sci. Tech., 41, 125-135, doi:10.1080/02786820601118398.
- Salcedo, D., et al. (2007), Technical Note: Use of a beam width probe in an Aerosol Mass Spectrometer to monitor particle collection efficiency in the field, Atmos. Chem. Phys., 7, 549-556, doi:10.5194/acp-7-549-2007.
- Zhang, Q., et al. (2007), A Case Study of Urban Particle Acidity and Its Influence on Secondary Organic Aerosol, Environ. Sci. Technol., 41, 3213-3219, doi:10.1021/es061812j.
- Zhang, Q., et al. (2007), Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes, Geophys. Res. Lett., 34, L13801, doi:10.1029/2007GL029979.
- DeCarlo, P. F., et al. (2006), Field-Deployable, High-Resolution, Time-of-Flight Aerosol Mass Spectrometer, Anal. Chem., 78, 8281-8289, doi:10.1021/ac061249n.
- Takegawa, N., et al. (2006), Seasonal and Diurnal Variations of Submicron Organic Aerosols in Tokyo Observed using the Aerodyne Aerosol Mass Spectrometer (AMS), J. Geophys. Res., 111, D11206, doi:10.1029/2005JD006515.
- Huffman, J. A., et al. (2005), Design, Modeling, Optimization, and Experimental Tests of a Particle Beam Width Probe for the Aerodyne Aerosol Mass Spectrometer, Aerosol Science and Technology, 39, 1143-1163, doi:10.1080/02786820500423782.
- Zhang, Q., et al. (2005), Deconvolution and Quantification of Hydrocarbon-like and Oxygenated Organic Aerosols Based on Aerosol Mass Spectrometry, Environ. Sci. Technol., 39, 4938-4952, doi:10.1021/es048568l.
- Zhang, Q., et al. (2005), Hydrocarbon-like and oxygenated organic aerosols in Pittsburgh: insights into sources and processes of organic aerosols, Atmos. Chem. Phys., 5, 3289-3311, doi:10.5194/acp-5-3289-2005.
- DeCarlo, P. F., et al. (2004), Particle Morphology and Density Characterization by Combined Mobility and Aerodynamic Diameter Measurements. Part 1: Theory, Aerosol Science and Technology, 38, 1185-1205, doi:10.1080/027868290903907.
- Slowik, J. G., et al. (2004), Particle Morphology and Density Characterization by Combined Mobility and Aerodynamic Diameter Measurements. Part 2: Application to Combustion-Generated Soot Aerosols as a Function of Fuel Equivalence Ratio, Aerosol Science and Technology, 38, 1206-1222, doi:10.1080/027868290903916.
- Tang, Y., et al. (2004), Multiscale simulations of tropospheric chemistry in the eastern Pacific and on the U.S. West Coast during spring 2002, J. Geophys. Res., 109, D23S11, doi:10.1029/2004JD004513.
- Del Negro, L. A., et al. (1997), Evaluating the role of NAT, NAD, and liquid H2SO4/H2O/HNO3 solutins in Antarctic polar stratospheric cloud aerosol: Observations and implications, J. Geophys. Res., 102, 13255.