Synonyms: 
INTEX-A
Associated content: 

Chemical Ionization Mass Spectrometer

The single mass analyzer CIMS (S-CIMS) was developed for use on NASA’s ER-2 aircraft. Its first measurements were made in 2000 (SOLVE, see photo). Subsequently, it has flown on the NASA DC-8 aircraft for INTEX-NA, DICE, TC4, ARCTAS, ATom, KORUS, FIREX, as well as on the NCAR C-130 during MILAGRO/INTEX-B. HNO3 is measured by selective ion chemical ionization via the fluoride transfer reaction: CF3O- + HNO3 → HF • NO3- + CF2O In addition to its fast reaction rate with HNO3, CF3O- can be used to measure additional acids and nitrates as well as SO2 [Amelynck et al., 2000; Crounse et al., 2006; Huey et al., 1996]. We have further identified CF3O- chemistry as useful for the measurement of less acidic species via clustering reactions [Crounse et al., 2006; Paulot et al., 2009a; Paulot et al., 2009b; St. Clair et al., 2010]: CF3O- + HX → CF3O- • HX where, e.g., HX = HCN, H2O2, CH3OOH, CH3C(O)OOH (PAA) The mass analyzer of the S-CIMS instrument was first upgraded from a quadrupole to a unit-mass resolution time-of-flight (ToF) analyzer. In 2023, the mass filter was again upgraded to an 1m flight path (~5000 deltaM/M).  The ToF admits the sample ion beam to the ion extractor, where a pulse of high voltage orthogonally deflects and accelerates the ions into the reflectron, which in turn redirects the ions toward the multichannel plate detector. Ions in the ToF follow a V-shaped from the extractor to detector, separating by mass as the smaller ions are accelerated to greater velocities by the high voltage pulse. The detector collects the ions as a function of time following each extractor pulse. The rapid-scan collection of the ToF guarantees a high temporal resolution (1 Hz or faster) and simultaneous data products from the S-CIMS instrument for all mass channels [Drewnick et al., 2005]. We have flown a tandem CIMS (TCIMS) instrument in addition to the SCIMS since INTEX-B (2006). The T-CIMS provides parent-daughter mass analysis, enabling measurement of compounds precluded from quantification by the S-CIMS due to mass interferences (e.g. MHP) or the presence of isobaric compounds (e.g. isoprene oxidation products) [Paulot et al., 2009b; St. Clair et al., 2010]. Calibrations of both CIMS instruments are performed in flight using isotopically-labeled reagents evolved from a gas cylinders or from a thermally-stabilized permeation tube oven [Washenfelder et al., 2003]. By using an isotopically labeled standard, the product ion signals are distinct from the natural analyte and calibration can be performed at any time without adversely affecting the ambient measurement.

Instrument Type: 
Point(s) of Contact: 

14-channel NASA Ames Airborne Tracking Sunphotometer

AATS-14 measures direct solar beam transmission at 14 wavelengths between 354 and 2139 nm in narrow channels with bandwidths between 2 and 5.6 nm for the wavelengths less than 1640 nm and 17.3 nm for the 2139 nm channel. The transmission measurements at all channels except 940 nm are used to retrieve spectra of aerosol optical depth (AOD). In addition, the transmission at 940 nm and surrounding channels is used to derive columnar water vapor (CWV) [Livingston et al., 2008]. Methods for AATS-14 data reduction, calibration, and error analysis have been described extensively, for example, by Russell et al. [2007] and Shinozuka et al. [2011]. AATS-14 measurements of spectral AOD and CWV obtained during aircraft vertical profiles can be differentiated to determine corresponding vertical profiles of spectral aerosol extinction and water vapor density. Such measurements have been used extensively in the characterization of the horizontal and vertical distribution of aerosol optical properties and in the validation of satellite aerosol sensors. For example, in the Aerosol Characterization Experiment-Asia (ACE-Asia), AATS measurements were used for closure (consistency) studies with in situ aerosol samplers aboard the NCAR C-130 and the CIRPAS Twin-Otter aircraft, and with ground-based lidar systems. In ACE-Asia, CLAMS (Chesapeake Lighthouse & Aircraft Measurements for Satellites, 2001), the Extended-MODIS-λ Validation Experiment (EVE), INTEX-A, INTEX-B, and ARCTAS, AATS results have been used in the validation of satellite sensors aboard various EOS platforms, providing important aerosol information used in the improvement of retrieval algorithms for the MISR and MODIS sensors among others.

Instrument Type: 
Measurements: 
Aircraft: 
DC-8 - AFRC, J-31, P-3 Orion - WFF, Convair 580 NRC, Twin Otter International, C130H - WFF
Point(s) of Contact: 

Airborne Tropospheric Hydrogen Oxides Sensor

ATHOS uses laser-induced fluorescence (LIF) to measure OH and HO2 simultaneously. OH is both excited and detected with the A2Σ+ (v’=0) → X2π (v”=0) transition near 308 nm. HO2 is reacted with reagent NO to form OH and is then detected with LIF. The laser is tuned on and off the OH wavelength to determine the fluorescence and background signals. ATHOS can detect OH and HO2 in clear air and light clouds from Earth's surface to the lower stratosphere. The ambient air is slowed from the aircraft speed of 240 m/s to 8-40 m/s in an aerodynamic nacelle. It is then pulled by a vacuum pump through a small inlet, up a sampling tube, and into two low-pressure detection cells - the first for OH and the second for HO2. Detection occurs in each cell at the intersection of the airflow, the laser beam, and the detector field-of-view.

Instrument Type: 
Measurements: 
Aircraft: 
Point(s) of Contact: 

Pages

Subscribe to RSS - INTEX-NA