Paul Wennberg
Organization:
California Institute of Technology
Email:
Business Address:
GPS/EAS
MC 131-24
1200 E. California Blvd.
Pasadena, CA 91125
United StatesWebsite:
First Author Publications:
- Wennberg, P. (2015), Chemical ionization tandem mass spectrometer for the in situ measurement of methyl hydrogen peroxide Jason M. St. Clair,1 David C. McCabe,1,a͒ John D. Crounse,2 Urs Steiner,3,b͒ and, Rev. Sci. Instrum., 81, ͑2010͒, doi:10.1063/1.3480552.
- Wennberg, P., et al. (2012), On the Sources of Methane to the Los Angeles Atmosphere, Environ. Sci. Technol., 46, 9282-9289, doi:10.1021/es301138y.
- Wennberg, P., et al. (1994), Removal of Stratospheric O3 by Radicals: In Situ Measurements of OH, HO2, NO, NO2, ClO, and BrO, Science, 266, 398-404.
Co-Authored Publications:
- Frankenberg, C., et al. (2024), Data Drought in the Humid Tropics: How to Overcome the Cloud Barrier in Greenhouse Gas Remote Sensing, Geophys. Res. Lett., 51, e2024GL108791, doi:10.1029/2024GL108791.
- Gkatzelis, G., et al. (2024), Parameterizations of US wildfire and prescribed fire emission ratios and emission factors based on FIREX-AQ aircraft measurements, Atmos. Chem. Phys., doi:10.5194/acp-24-929-2024.
- Gkatzelis, G., et al. (2024), Parameterizations of US wildfire and prescribed fire emission ratios and emission factors based on FIREX-AQ aircraft measurements, Atmos. Chem. Phys., doi:10.5194/acp-24-929-2024.
- Roberts, J., et al. (2024), Observations of cyanogen bromide (BrCN) in the global troposphere and their relation to polar surface O3 destruction, Atmos. Chem. Phys., doi:10.5194/acp-24-3421-2024.
- Kim, H., et al. (2023), Observed versus simulated OH reactivity during KORUS-AQ campaign: Implications for emission inventory and chemical environment in East Asia, KORUS-AQ campaign. Elem Sci Anth, 10, 1-26, doi:https.
- Laughner, J., et al. (2023), A new algorithm to generate a priori trace gas profiles for the GGG2020 retrieval algorithm, Atmos. Meas. Tech., 16, 1121-1146, doi:10.5194/amt-16-1121-2023.
- Parker, H. A., et al. (2023), Inferring the vertical distribution of CO and CO2 from TCCON total column values using the TARDISS algorithm, Atmos. Meas. Tech., 16, 2601-2625, doi:10.5194/amt-16-2601-2023.
- Rickly, P., et al. (2023), Emission factors and evolution of SO2 measured from biomass burning in wildfires and agricultural fires, Atmos. Chem. Phys., doi:10.5194/acp-22-15603-2022.
- Travis, K. R., et al. (2023), Emission Factors for Crop Residue and Prescribed Fires in the Eastern US during FIREX-AQ, J. Geophys. Res., 128, e2023JD039309, doi:10.1029/2023JD039309.
- Wang, Y., et al. (2023), Elucidating climatic drivers of photosynthesis by tropical forests, wileyonlinelibrary.com/journal/gcb, 1-15, doi:10.1111/gcb.16837.
- Yin, Y., et al. (2023), Authors, some Unequal exposure to heatwaves in Los Angeles: Impact rights reserved; exclusive licensee of uneven green spaces American Association for the Advancement of Science. No claim to, Yin et al., Sci. Adv., 9, 2023.
- Allen, H., et al. (2022), H2O2 and CH3OOH (MHP) in the Remote Atmosphere: 1. Global Distribution and Regional Influences, J. Geophys. Res., 127, doi:10.1029/2021JD035701.
- Allen, H., et al. (2022), H2O2 and CH3OOH (MHP) in the Remote Atmosphere: 2. Physical and Chemical Controls, J. Geophys. Res., 127, doi:10.1029/2021JD035702.
- Bourgeois, I., et al. (2022), Comparison of airborne measurements of NO, NO2, HONO, NOy , and CO during FIREX-AQ, Atmos. Meas. Tech., 15, 4901-4930, doi:10.5194/amt-15-4901-2022.
- Brune, W. H., et al. (2022), Observations of atmospheric oxidation and ozone production in South Korea, Atmos. Environ., 269, 118854, doi:10.1016/j.atmosenv.2021.118854.
- Lee, Y. R., et al. (2022), An investigation of petrochemical emissions during KORUS-AQ: Ozone production, reactive nitrogen evolution, and aerosol production. Elementa: Science of the Anthropocene, 10, 00079-24, doi:10.1525/elementa.2022.00079.
- Tribby, A. L., et al. (2022), Hydrocarbon Tracers Suggest Methane Emissions from Fossil Sources Occur Predominately Before Gas Processing and That Petroleum Plays Are a Significant Source, Environ. Sci. Technol., doi:10.1021/acs.est.2c00927.
- Wolfe, G. M., et al. (2022), Photochemical evolution of the 2013 California Rim Fire: synergistic impacts of reactive hydrocarbons and enhanced oxidants, Atmos. Chem. Phys., doi:10.5194/acp-22-4253-2022.
- Xu, L., et al. (2022), Adv.7, eabl3648 (2021) 8 December 2021SCIENCE ADVANCES, Ozone chemistry in western U.S. wildfire plumes, Xu et al., Sci., 7, eabl3648, doi:10.1126/sciadv.abl3648.
- Xu, L., et al. (2022), Ozone chemistry in western U.S. wildfire plumes, Science Advances, 7, eabl3648, doi:10.1126/sciadv.abl3648.
- zhang, X., et al. (2022), Probing isoprene photochemistry at atmospherically relevant nitric oxide levels, Chem, 8, 2022, doi:10.1016/j.chempr.2022.08.003.
- Gonzalez, Y., et al. (2021), Impact of stratospheric air and surface emissions on tropospheric nitrous oxide during ATom, Atmos. Chem. Phys., 21, 11113-11132, doi:10.5194/acp-21-11113-2021.
- Hedelius, J. K., et al. (2021), Regional and Urban Column CO Trends and Anomalies as Observed by MOPITT Over 16 Years, J. Geophys. Res., 126, e2020JD033967, doi:10.1029/2020JD033967.
- Nault, B., et al. (2021), Chemical transport models often underestimate inorganic aerosol acidity in remote regions of the atmosphere, Commun Earth Environ, 2, doi:10.1038/s43247-021-00164-0.
- Rickly, P., et al. (2021), Improvements to a laser-induced fluorescence instrument for measuring SO2 – impact on accuracy and precision, Atmos. Meas. Tech., 14, 2429-2439, doi:10.5194/amt-14-2429-2021.
- Thompson, C., et al. (2021), The NASA Atmospheric Tomography (ATom) Mission: Imaging the Chemistry of the Global Atmosphere, Bull. Am. Meteorol. Soc., doi:10.1175/BAMS-D-20-0315.1.
- Wu, L., et al. (2021), Methane retrieved from TROPOMI: improvement of the data product and validation of the first 2 years of measurements Alba Lorente1 , Tobias Borsdorff1 , Andre Butz2,3 , Otto Hasekamp1 , Joost aan de Brugh1 , Andreas Schneider1 ,, Atmos. Meas. Tech., 14, 665-684, doi:10.5194/amt-14-665-2021.
- Brune, W. H., et al. (2020), Exploring Oxidation in the Remote Free Troposphere: Insights From Atmospheric Tomography (ATom), J. Geophys. Res., 125, doi:10.1029/2019JD031685.
- Byrne, B., et al. (2020), 2 fluxes obtained by combining surface-based and 3 space-based atmospheric CO2 measurements, J. Geophys. Res., doi:10.1029/2019JD032029.
- Cuchiara, G. C., et al. (2020), Vertical Transport, Entrainment, and Scavenging Processes Affecting Trace Gases in a Modeled and Observed SEAC4RS Case Study, J. Geophys. Res., 125, doi:10.1029/2019JD031957.
- Gaubert, B., et al. (2020), Correcting model biases of CO in East Asia: impact on oxidant distributions during KORUS-AQ, Atmos. Chem. Phys., 20, 14617-14647, doi:10.5194/acp-20-14617-2020.
- Parker, R. J., et al. (2020), A decade of GOSAT Proxy satellite CH4 observations, Earth Syst. Sci. Data, 12, 3383-3412, doi:10.5194/essd-12-3383-2020.
- Schroeder, J. R., et al. (2020), Observation-based modeling of ozone chemistry in the Seoul metropolitan area during the Korea-United States Air Quality Study (KORUS-AQ), Elem Sci Anth, 8, doi:10.1525/elementa.400.
- Thames, A., et al. (2020), Missing OH reactivity in the global marine boundary layer, Atmos. Chem. Phys., 20, 4013-4029, doi:10.5194/acp-20-4013-2020.
- Travis, K., et al. (2020), Constraining remote oxidation capacity with ATom observations, Atmos. Chem. Phys., 20, 7753-7781, doi:10.5194/acp-20-7753-2020.
- Yin, Y., et al. (2020), This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes., Agu, 1, 15.
- Allen, H., et al. (2019), ATom: L2 In Situ Data from Caltech Chemical Ionization Mass Spectrometer (CIT-CIMS), Ornl Daac, doi:10.3334/ORNLDAAC/1713.
- Hedelius, J. K., et al. (2019), Evaluation of MOPITT Version 7 joint TIR-NIR X-CO retrievals with TCCON, Atmos. Meas. Tech., 12, 5547-5572, doi:10.5194/amt-12-5547-2019.
- Kiel, M., et al. (2019), How bias correction goes wrong: measurement of XCO2 affected by erroneous surface pressure estimates, Atmos. Meas. Tech., 12, 2241-2259, doi:10.5194/amt-12-2241-2019.
- Wang, S., et al. (2019), Atmospheric Acetaldehyde: Importance of Air‐Sea Exchange and a Missing Source in the Remote Troposphere, Geophys. Res. Lett., 46, doi:10.1029/2019GL082034.
- Wolfe, G. M., et al. (2019), Mapping hydroxyl variability throughout the global remote troposphere via synthesis of airborne and satellite formaldehyde observations, Proc. Natl. Acad. Sci., doi:10.1073/pnas.1821661116.
- Wolfe, G. M., et al. (2019), ATom: Column-Integrated Densities of Hydroxyl and Formaldehyde in Remote Troposphere, Ornl Daac, doi:10.3334/ORNLDAAC/1669.
- Hedelius, J. K., et al. (2018), Southern California megacity CO2, CH4, and CO flux estimates using ground- and space-based remote sensing and a Lagrangian model, Ca, doi:https://doi.org/10.5194/acp-18-16271-2018.
- Hedelius, J. K., et al. (2018), Southern California megacity CO2, CH4, and CO flux estimates using ground- and space-based remote sensing and a Lagrangian model, Atmos. Chem. Phys., 18, 16271-16291, doi:10.5194/acp-18-16271-2018.
- Hedelius, J. K., et al. (2018), Southern California megacity CO2, CH4, and CO flux estimates using ground- and space-based remote sensing and a Lagrangian model, Atmos. Chem. Phys., 18, 16271-16291, doi:10.5194/acp-18-16271-2018.
- Li, J., et al. (2018), Decadal changes in summertime reactive oxidized nitrogen and surface ozone over the Southeast United States, Atmos. Chem. Phys., 18, 2341-2361, doi:10.5194/acp-18-2341-2018.
- O'Dell, C., et al. (2018), Improved retrievals of carbon dioxide from Orbiting Carbon Observatory-2 with the version 8 ACOS algorithm, Atmos. Meas. Tech., 11, 6539-6576, doi:10.5194/amt-11-6539-2018.
- Oh, Y., et al. (2018), Characteristics of greenhouse gas concentrations derived from ground-based FTS spectra at Anmyeondo, South Korea, Atmos. Meas. Tech., 11, 2361-2374, doi:10.5194/amt-11-2361-2018.
- Romer, P., et al. (2018), Cite This: Environ. Sci. Technol. 2018, 52, 13738−13746 pubs.acs.org/est Constraints on Aerosol Nitrate Photolysis as a Potential Source of HONO and NOx, Environ. Sci. Technol., doi:10.1021/acs.est.8b03861.
- Silvern, R. F., et al. (2018), Observed NO/NO2 Ratios in the Upper Troposphere Imply Errors in NO-NO2-O3 Cycling Kinetics or an Unaccounted NOx Reservoir, Geophys. Res. Lett..
- Wofsy, S. C., et al. (2018), ATom: Merged Atmospheric Chemistry, Trace Gases, and Aerosols, Ornl Daac, doi:10.3334/ORNLDAAC/1581.
- Crisp, D., et al. (2017), The on-orbit performance of the Orbiting Carbon Observatory-2 (OCO-2) instrument and its radiometrically calibrated products, Atmos. Meas. Tech., 10, 59-81, doi:10.5194/amt-10-59-2017.
- Eldering, A., et al. (2017), R ES E A RC H | R E MO T E S E NS I NG, Science, 358, eaam5745, doi:10.1126/science.aam5745.
- Eldering, A., et al. (2017), The Orbiting Carbon Observatory‐2 early science investigations of regional carbon dioxide fluxes, Science, 358, eaam5745.
- Eldering, A., et al. (2017), The Orbiting Carbon Observatory-2: first 18 months of science data products, Atmos. Meas. Tech., 10, 549-563, doi:10.5194/amt-10-549-2017.
- Liu, X., et al. (2017), Airborne measurements of western U.S. wildfire emissions: Comparison with prescribed burning and air quality implications, J. Geophys. Res., 122, 6108-6129, doi:10.1002/2016JD026315.
- Nault, B., et al. (2017), Lightning NOx Emissions: Reconciling Measured and Modeled Estimates With Updated NOx Chemistry, Geophys. Res. Lett., 44, 9479-9488, doi:10.1002/2017GL074436.
- Wunch, D., et al. (2017), Comparisons of the Orbiting Carbon Observatory-2 (OCO-2) XCO2 measurements with TCCON, Atmos. Meas. Tech., 10, 2209-2238, doi:10.5194/amt-10-2209-2017.
- Zeng, Z., et al. (2017), Aerosol scattering effects on water vapor retrievals over the Los Angeles Basin, Atmos. Chem. Phys., 17, 2495-2508, doi:10.5194/acp-17-2495-2017.
- Cai, C., et al. (2016), Simulating reactive nitrogen, carbon monoxide, and ozone in California during ARCTAS-CARB 2008 with high wildfire activity, Atmos. Environ., 128, 28-44, doi:10.1016/j.atmosenv.2015.12.031.
- Chen, J., et al. (2016), Differential column measurements using compact solar-tracking spectrometers, Atmos. Chem. Phys., 16, 8479-8498, doi:10.5194/acp-16-8479-2016.
- Dupuy, E., et al. (2016), Comparison of XH2O Retrieved from GOSAT Short-Wavelength Infrared Spectra with Observations from the TCCON Network, Remote Sens., 8, 414, doi:10.3390/rs8050414.
- Kulawik, S., et al. (2016), Consistent evaluation of ACOS-GOSAT, BESD-SCIAMACHY, CarbonTracker, and MACC through comparisons to TCCON, Atmos. Meas. Tech., 9, 683-709, doi:10.5194/amt-9-683-2016.
- Liu, X., et al. (2016), Agricultural fires in the southeastern U.S. during SEAC4RS: Emissions of trace gases and particles and evolution of ozone, reactive nitrogen, and organic aerosol, J. Geophys. Res., 121, 7383-7414, doi:10.1002/2016JD025040.
- Nault, B., et al. (2016), Observational Constraints on the Oxidation of NOx in the Upper Troposphere, J. Phys. Chem. A, 120, 1468-1478, doi:10.1021/acs.jpca.5b07824.
- Travis, K., et al. (2016), Why do models overestimate surface ozone in the Southeast United States?, Atmos. Chem. Phys., 16, 13561-13577, doi:10.5194/acp-16-13561-2016.
- Apel, E., et al. (2015), Upper tropospheric ozone production from lightning NOx-impacted convection: Smoke ingestion case study from the DC3 campaign, J. Geophys. Res., 120, 2505-2523, doi:10.1002/2014JD022121.
- Barth, M. C., et al. (2015), The Deep Convective Clouds And Chemistry (Dc3) Field Campaign, Bull. Am. Meteorol. Soc., 1281-1310.
- Frankenberg, C., et al. (2015), The Orbiting Carbon Observatory (OCO-2): spectrometer performance evaluation using pre-launch direct sun measurements, Atmos. Meas. Tech., 8, 301-313, doi:10.5194/amt-8-301-2015.
- Kim, P., et al. (2015), Sources, seasonality, and trends of southeast US aerosol: an integrated analysis of surface, aircraft, and satellite observations with the GEOS-Chem chemical transport model, Atmos. Chem. Phys., 15, 10411-10433, doi:10.5194/acp-15-10411-2015.
- Liao, J., et al. (2015), Airborne organosulfates measurements over the continental US, J. Geophys. Res., 120, 2990-3005, doi:10.1002/2014JD022378.
- Teng, A., et al. (2015), Hydroxy nitrate production in the OH-initiated oxidation of alkenes, Atmos. Chem. Phys., 15, 4297-4316, doi:10.5194/acp-15-4297-2015.
- Wolfe, G. M., et al. (2015), Quantifying sources and sinks of reactive gases in the lower atmosphere using airborne flux observations, Geophys. Res. Lett., 42, 8231-8240, doi:10.1002/2015GL065839.
- Agustí-Panareda, A., et al. (2014), Forecasting global atmospheric CO2, Atmos. Chem. Phys., 14, 11959-11983, doi:10.5194/acp-14-11959-2014.
- Deng, F., et al. (2014), Inferring regional sources and sinks of atmospheric CO2 from GOSAT XCO2 data, Atmos. Chem. Phys., 14, 3703-3727, doi:10.5194/acp-14-3703-2014.
- Frankenberg, C., et al. (2014), The Orbiting Carbon Observatory (OCO-2): spectrometer performance evaluation using pre-launch direct sun measurements, Atmos. Meas. Tech., 7, 1-10, doi:10.5194/amt-7-1-2014.
- Galli, A., et al. (2014), The impact of spectral resolution on satellite retrieval accuracy of CO2 and CH4, Atmos. Meas. Tech., 7, 1105-1119, doi:10.5194/amt-7-1105-2014.
- Gao, R., et al. (2014), OH in the tropical upper troposphere and its relationships to solar radiation and reactive nitrogen, J Atmos Chem, 71, 55-64.
- Rex, M., et al. (2014), A tropical West Pacific OH minimum and implications for stratospheric composition, Atmos. Chem. Phys., 14, 4827-4841, doi:10.5194/acp-14-4827-2014.
- St. Clair, J. M., et al. (2014), Quantification of hydroxyacetone and glycolaldehyde using chemical ionization mass spectrometry, Atmos. Chem. Phys., 14, 4251-4262, doi:10.5194/acp-14-4251-2014.
- Belikov, D. A., et al. (2013), Simulations of column-averaged CO2 and CH4 using the NIES TM with a hybrid sigma-isentropic (σ -θ) vertical coordinate, Atmos. Chem. Phys., 13, 1713-1732, doi:10.5194/acp-13-1713-2013.
- Browne, E. C., et al. (2013), Observations of total RONO2 over the boreal forest: NOx sinks and HNO3 sources, Atmos. Chem. Phys., 13, 4543-4562, doi:10.5194/acp-13-4543-2013.
- Crounse, J. D., et al. (2013), Autoxidation of Organic Compounds in the Atmosphere, J. Phys. Chem. Lett., 2013, dx.
- Frankenburg, C., et al. (2013), Water vapor isotopologue retrievals from high-resolution GOSAT shortwave infrared spectra, Atmos. Meas. Tech., 6, 263-274, doi:10.5194/amt-6-263-2013.
- Hase, F., et al. (2013), Calibration of sealed HCl cells used for TCCON instrumental line shape monitoring, Atmos. Meas. Tech., 6, 3527-3537, doi:10.5194/amt-6-3527-2013.
- Keppel-Aleks, G., et al. (2013), Towards constraints on fossil fuel emissions from total column carbon dioxide, Atmos. Chem. Phys., 13, 4349-4357, doi:10.5194/acp-13-4349-2013.
- Keppel-Aleks, G., et al. (2013), Atmospheric Carbon Dioxide Variability in the Community Earth System Model: Evaluation and Transient Dynamics during the Twentieth and Twenty-First Centuries, J. Climate, 26, 4447-4475, doi:10.1175/JCLI-D-12-00589.1.
- Mandrake, L., et al. (2013), Semi-autonomous sounding selection for OCO-2, Atmos. Meas. Tech., 6, 2851-2864, doi:10.5194/amt-6-2851-2013.
- Mao, J., et al. (2013), Ozone and organic nitrates over the eastern United States: Sensitivity to isoprene chemistry, J. Geophys. Res., 118, 11256-11268, doi:10.1002/jgrd.50817.
- Messerschmidt, J., et al. (2013), Evaluation of seasonal atmosphere–biosphere exchange estimations with TCCON measurements, Atmos. Chem. Phys., 13, 5103-5115, doi:10.5194/acp-13-5103-2013.
- Oshchepkov, S., et al. (2013), Effects of atmospheric light scattering on spectroscopic observations of greenhouse gases from space. Part 2: Algorithm intercomparison in the GOSAT data processing for CO2 retrievals over TCCON sites, J. Geophys. Res., 118, 1493-1512, doi:10.1002/jgrd.50146.
- Wunch, D., et al. (2013), The covariation of Northern Hemisphere summertime CO2 with surface temperature in boreal regions, Atmos. Chem. Phys., 13, 9447-9459, doi:10.5194/acp-13-9447-2013.
- Xie, Y., et al. (2013), Understanding the impact of recent advances in isoprene photooxidation on simulations of regional air quality, Atmos. Chem. Phys., 13, 8439-8455, doi:10.5194/acp-13-8439-2013.
- Yoshida, Y., et al. (2013), Improvement of the retrieval algorithm for GOSAT SWIR XCO2 and XCH4 and their validation using TCCON data, Atmos. Meas. Tech., 6, 1533-1547, doi:10.5194/amt-6-1533-2013.
- Apel, E., et al. (2012), Impact of the deep convection of isoprene and other reactive trace species on radicals and ozone in the upper troposphere, Atmos. Chem. Phys., 12, 1135-1150, doi:10.5194/acp-12-1135-2012.
- Crounse, J. D., et al. (2012), Atmospheric Fate of Methacrolein. 1. Peroxy Radical Isomerization Following Addition of OH and O2, J. Phys. Chem. A, 116, 5756-5762, doi:10.1021/jp211560u.
- Galli, A., et al. (2012), CH4, CO, and H2O spectroscopy for the Sentinel-5 Precursor mission: an assessment with the Total Carbon Column Observing Network measurements, Atmos. Meas. Tech., 5, 1387-1398, doi:10.5194/amt-5-1387-2012.
- Keppel-Aleks, G., et al. (2012), The imprint of surface fluxes and transport on variations in total column carbon dioxide, Biogeosciences, 9, 875-891, doi:10.5194/bg-9-875-2012.
- O'Dell, C., et al. (2012), The ACOS CO2 retrieval algorithm – Part 1: Description and validation against synthetic observations, Atmos. Meas. Tech., 5, 99-121, doi:10.5194/amt-5-99-2012.
- Olson, J., et al. (2012), An analysis of fast photochemistry over high northern latitudes during spring and summer using in-situ observations from ARCTAS and TOPSE, Atmos. Chem. Phys., 12, 6799-6825, doi:10.5194/acp-12-6799-2012.
- Risi, C., et al. (2012), Process-evaluation of tropospheric humidity simulated by general circulation models using water vapor isotopologues: 1. Comparison between models and observations, J. Geophys. Res., 117, D05303, doi:10.1029/2011JD016621.
- Schneising, O., et al. (2012), Atmospheric greenhouse gases retrieved from SCIAMACHY: comparison to ground-based FTS measurements and model results, Atmos. Chem. Phys., 12, 1527-1540, doi:10.5194/acp-12-1527-2012.
- Wespes, C., et al. (2012), Analysis of ozone and nitric acid in spring and summer Arctic pollution using aircraft, ground-based, satellite observations and MOZART-4 model: source attribution and partitioning, Atmos. Chem. Phys., 12, 237-259, doi:10.5194/acp-12-237-2012.
- Wolfe, G. M., et al. (2012), Photolysis, OH reactivity and ozone reactivity of a proxy for isoprene-derived hydroperoxyenals (HPALDs), Phys. Chem. Chem. Phys., 14, 7276-7286, doi:10.1039/c2cp40388a.
- Akagi, S., et al. (2011), Emission factors for open and domestic biomass burning for use in atmospheric models, Atmos. Chem. Phys., 11, 4039-4072, doi:10.5194/acp-11-4039-2011.
- Barkley, M. P., et al. (2011), Can a “state of the art” chemistry transport model simulate Amazonian tropospheric chemistry?, J. Geophys. Res., 116, D16302, doi:10.1029/2011JD015893.
- Butz, A., et al. (2011), Toward accurate CO2 and CH4 observations from GOSAT, Geophys. Res. Lett., 38, L14812, doi:10.1029/2011GL047888.
- Carn, S. A., et al. (2011), In situ measurements of tropospheric volcanic plumes in Ecuador and Colombia during TC4, J. Geophys. Res., 116, D00J24, doi:10.1029/2010JD014718.
- Chevallier, F., et al. (2011), Global CO2 fluxes inferred from surface air-sample measurements and from TCCON retrievals of the CO2 total column, Geophys. Res. Lett., 38, L24810, doi:10.1029/2011GL049899.
- Crounse, J. D., et al. (2011), Peroxy radical isomerization in the oxidation of isoprene, Phys. Chem. Chem. Phys., 13, 13607-13613, doi:10.1039/c1cp21330j.
- Hecobian, A., et al. (2011), Comparison of chemical characteristics of 495 biomass burning plumes intercepted by the NASA DC-8 aircraft during the ARCTAS/CARB-2008 field campaign, Atmos. Chem. Phys., 11, 13325-13337, doi:10.5194/acp-11-13325-2011.
- Huang, M., et al. (2011), Multi-scale modeling study of the source contributions to near-surface ozone and sulfur oxides levels over California during the ARCTAS-CARB period, Atmos. Chem. Phys., 11, 3173-3194, doi:10.5194/acp-11-3173-2011.
- Keppel-Aleks, G., P. Wennberg, and T. Schneider (2011), Sources of variations in total column carbon dioxide, Atmos. Chem. Phys., 11, 3581-3593, doi:10.5194/acp-11-3581-2011.
- Morino, I., et al. (2011), Preliminary validation of column-averaged volume mixing ratios of carbon dioxide and methane retrieved from GOSAT short-wavelength infrared spectra, Atmos. Meas. Tech., 4, 1061-1076, doi:10.5194/amt-4-1061-2011.
- Mu, M., et al. (2011), Daily and 3‐hourly variability in global fire emissions and consequences for atmospheric model predictions of carbon monoxide, J. Geophys. Res., 116, D24303, doi:10.1029/2011JD016245.
- Parker, R., et al. (2011), Methane observations from the Greenhouse Gases Observing SATellite: Comparison to ground‐based TCCON data and model calculations, Geophys. Res. Lett., 38, L15807, doi:10.1029/2011GL047871.
- Paulot, F., et al. (2011), Importance of secondary sources in the atmospheric budgets of formic and acetic acids, Atmos. Chem. Phys., 11, 1989-2013, doi:10.5194/acp-11-1989-2011.
- Reuter, M., et al. (2011), Retrieval of atmospheric CO2 with enhanced accuracy and precision from SCIAMACHY: Validation with FTS measurements and comparison with model results, J. Geophys. Res., 116, D04301, doi:10.1029/2010JD015047.
- Simpson, I. J., et al. (2011), Boreal forest fire emissions in fresh Canadian smoke plumes: C1-C10 volatile organic compounds (VOCs), CO2, CO, NO2, NO, HCN and CH3CN, Atmos. Chem. Phys., 11, 6445-6463, doi:10.5194/acp-11-6445-2011.
- Wunch, D., et al. (2011), The Total Carbon Column Observing Network, Phil. Trans. Royal Soc. A, 369, 2087-2112, doi:10.1098/rsta.2010.0240.
- Adhikary, B., et al. (2010), A regional scale modeling analysis of aerosol and trace gas distributions over the eastern Pacific during the INTEX-B field campaign, Atmos. Chem. Phys., 10, 2091-2115, doi:10.5194/acp-10-2091-2010.
- Adhikary, B., et al. (2010), Trans-Pacific transport and evolution of aerosols and trace gases from Asia during the INTEX-B field campaign, Atmos. Chem. Phys. Discuss., 10, 2091-2115.
- Alvarado, M. J., et al. (2010), Nitrogen oxides and PAN in plumes from boreal fires during ARCTAS-B and their impact on ozone: an integrated analysis of aircraft and satellite observations, Atmos. Chem. Phys., 10, 9739-9760, doi:10.5194/acp-10-9739-2010.
- Avery, M., et al. (2010), Convective distribution of tropospheric ozone and tracers in the Central American ITCZ region: Evidence from observations during TC4, J. Geophys. Res., 115, D00J21, doi:10.1029/2009JD013450.
- DeCarlo, P. F., et al. (2010), Investigation of the sources and processing of organic aerosol over the Central Mexican Plateau from aircraft measurements during MILAGRO, Atmos. Chem. Phys., 10, 5257-5280, doi:10.5194/acp-10-5257-2010.
- Froyd, K., et al. (2010), Contribution of isoprene-derived organosulfates to free tropospheric aerosol mass, Proc. Natl. Acad. Sci., 50, 21360-21365, doi:10.1073/pnas.1012561107.
- Mao, J., et al. (2010), Chemistry of hydrogen oxide radicals (HOx) in the Arctic troposphere in spring, Atmos. Chem. Phys., 10, 5823-5838, doi:10.5194/acp-10-5823-2010.
- Singh, H., et al. (2010), Pollution influences on atmospheric composition and chemistry at high northern latitudes: Boreal and California forest fire emissions, Atmos. Environ., 44, 4553-4564, doi:10.1016/j.atmosenv.2010.08.026.
- St. Clair, J. M., et al. (2010), Chemical ionization tandem mass spectrometer for the in situ measurement of methyl hydrogen peroxide, Rev. Sci. Instrum., 81, 094102, doi:10.1063/1.3480552.
- Toon, B., et al. (2010), Planning, implementation, and first results of the Tropical Composition, Cloud and Climate Coupling Experiment (TC4), J. Geophys. Res., 115, D00J04, doi:10.1029/2009JD013073.
- Wunch, D., et al. (2010), Calibration of the Total Carbon Column Observing Network using aircraft profile data, Atmos. Meas. Tech., 3, 1351-1362, doi:10.5194/amt-3-1351-2010.
- Crounse, J. D., et al. (2009), Biomass burning and urban air pollution over the Central Mexican Plateau, Atmos. Chem. Phys., 9, 4929-4944, doi:10.5194/acp-9-4929-2009.
- Garden, A. L., et al. (2009), Calculation of conformationally weighted dipole moments useful in ion–molecule collision rate estimates, Chemical Physics Letters, 474, 45-50, doi:10.1016/j.cplett.2009.04.038.
- McNaughton, C. S., et al. (2009), Observations of heterogeneous reactions between Asian pollution and mineral dust over the Eastern North Pacific during INTEX-B, Atmos. Chem. Phys., 9, 8283-8308, doi:10.5194/acp-9-8283-2009.
- Paulot, F., et al. (2009), Isoprene photooxidation: New insights into the production of acids and organic nitrates, Atmos. Chem. Phys., 9, 1479-1501.
- Paulot, F., et al. (2009), Unexpected epoxide formation in the gas-phase photooxidation of isoprene, Science, 325, 730-733.
- Perring, A., et al. (2009), Airborne observations of total RONO2: new constraints on the yield and lifetime of isoprene nitrates, Atmos. Chem. Phys., 9, 1451-1463, doi:10.5194/acp-9-1451-2009.
- Spencer, K. M., et al. (2009), Inferring ozone production in an urban atmosphere using measurements of peroxynitric acid, Atmos. Chem. Phys., 9, 3697-3707, doi:10.5194/acp-9-3697-2009.
- Wunch, D., et al. (2009), Emissions of greenhouse gases from a North American megacity, Geophys. Res. Lett., 36, L15810, doi:10.1029/2009GL039825.
- Yokelson, R., et al. (2009), Emissions from biomass burning in the Yucatan, Atmos. Chem. Phys., 9, 5785-5812, doi:10.5194/acp-9-5785-2009.
- DeCarlo, P. F., et al. (2008), Fast airborne aerosol size and chemistry measurements above Mexico City and Central Mexico during the MILAGRO campaign, Atmos. Chem. Phys., 8, 4027-4048, doi:10.5194/acp-8-4027-2008.
- Heald, C. L., et al. (2008), Total observed organic carbon (TOOC) in the atmosphere: a synthesis of North American observations, Atmos. Chem. Phys., 8, 2007-2025, doi:10.5194/acp-8-2007-2008.
- Heald, C. L., et al. (2008), Total observed organic carbon (TOOC) in the atmosphere: a synthesis of North American observations, Atmos. Chem. Phys., 8, 2007-2025.
- Ren, X., et al. (2008), HOx chemistry during INTEX-A 2004: Observation, model calculation, and comparison with previous studies, J. Geophys. Res., 113, D05310, doi:10.1029/2007JD009166.
- Bertram, T. H., et al. (2007), Direct Measurements of the Convective Recycling of the Upper Troposphere, Science, 315, 816-820, doi:10.1126/science.1134548.
- Keppel-Aleks, G., et al. (2007), Reducing the impact of source brightness fluctuations on spectra obtained by Fourier-transform spectrometry, Appl. Opt., 46, 4774-4779.
- Liang, Q., et al. (2007), Summertime influence of Asian pollution in the free troposphere over North America, J. Geophys. Res., 112, D12S11, doi:10.1029/2006JD007919.
- Miller, C. E., et al. (2007), Precision requirements for space-based XCO2 data, J. Geophys. Res., 112, D10314, doi:10.1029/2006JD007659.
- Peters, W., et al. (2007), An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker, Proc. Natl. Acad. Sci., 104, 18925-18930, doi:10.1073/pnas.0708986104.
- Yang, Z., et al. (2007), New constraints on Northern Hemisphere growing season net flux, Geophys. Res. Lett., 34, L12807, doi:10.1029/2007GL029742.
- Yokelson, R., et al. (2007), Emissions from forest fires near Mexico City, Atmos. Chem. Phys., 7, 5569-5584, doi:10.5194/acp-7-5569-2007.
- Bösch, H., et al. (2006), Space-based near-infrared CO2 measurements: Testing the Orbiting Carbon Observatory retrieval algorithm and validation concept using SCIAMACHY observations over Park Falls, Wisconsin, J. Geophys. Res., 111, D23302, doi:10.1029/2006JD007080.
- Crounse, J. D., et al. (2006), Measurement of gas-phase hydroperoxides by chemical ionization mass spectrometry, Anal. Chem., 78, 6726-6732, doi:10.1021/ac0604235.
- Kleinböhl, A., et al. (2006), On the stratospheric chemistry of hydrogen cyanide, Geophys. Res. Lett., 33, L11806, doi:10.1029/2006GL026015.
- Kwan, A. J., et al. (2006), On the flux of oxygenated volatile organic compounds from organic aerosol oxidation, Geophys. Res. Lett., 33, L15815, doi:10.1029/2006GL026144.
- Washenfelder, R. A., et al. (2006), Carbon dioxide column abundances at the Wisconsin Tall Tower site, J. Geophys. Res., 111, D22305, doi:10.1029/2006JD007154.
- Salawitch, R., et al. (2005), Sensitivity of ozone to bromine in the lower stratosphere, Geophys. Res. Lett., 32, L05811, doi:10.1029/2004GL021504.
- Yang, Z., et al. (2005), Ground-based photon path measurements from solar absorption spectra of the O2 A-band, J. Quant. Spectrosc. Radiat. Transfer, 90, 309-321, doi:10.1016/j.jqsrt.2004.03.020.
- Crisp, D., et al. (2004), The Orbiting Carbon Observatory (OCO) mission, Advances in Space Research, 34, 700-709, doi:10.1016/j.asr.2003.08.062.
- Dhaniyala, S., et al. (2004), Stratospheric Aerosol Sampling: Effect of a Blunt-Body Housing on Inlet Sampling Characteristics, Aerosol Sci. Tech., 38, 1080-1090, doi:10.1080/02786829088581.
- Fry, J. L., et al. (2004), Cis-cis and trans-perp HOONO: Action spectroscopy and isomerization kinetics, Journal Of Chemical Physics, 121, 1432-1448, doi:10.1063/1.1760714.
- McKinney, K. A., et al. (2004), Trajectory studies of large HNO3-containing PSC particles in the Arctic: Evidence for the role of NAT, Geophys. Res. Lett., 31, l05110, doi:10.1029/2003GL018430.
- Yang, Z., et al. (2004), Quantitative Spectroscopy & Radiative Journal of Quantitative Spectroscopy & Transfer ELSEVIER Radiative Transfer 90 (Ground-based photon path measurements from solar absorption spectra of the 0 2 A-band, J. Quant. Spectrosc. Radiat. Transfer, 90, 309-321, doi:10.1016/j.jqsrt.2004.03.020.
- Washenfelder, R. A., et al. (2003), A compact, lightweight gas standards generator for permeation tubes, Rev. Sci. Instrum., 74, 3151-3154.
- Washenfelder, R. A., P. Wennberg, and G. Toon (2003), Tropospheric methane retrieved from ground-based near-IR solar absorption spectra, Geophys. Res. Lett., 30, 2226, doi:10.1029/2003GL017969.
- Washenfeldera), R. A., et al. (2003), A compact, lightweight gas standards generator for permeation tubes, Rev. Sci. Instrum., 74, 9-15, doi:10.1063/1.1570949.
- Northway, M. J., et al. (2002), An analysis of large HNO3-containing particles sampled in the Arctic stratosphere during the winter of 1999/2000, J. Geophys. Res., 107, 8298, doi:10.1029/2001JD001079.
- Fahey, D., et al. (2001), The detection of large HNO3-containing particles in the winter artic stratosphere, Science, 291, 1026-1031.
- Lanzendorf, E. J., et al. (2001), Establishing the dependence of [HO2]/[OH] on temperature, halogen loading, O3, and Nox based on in situ measurements from the NASA ER-2, J. Phys. Chem. A, 105, 1535-1542.
- Perkins, K. K., et al. (2001), The Nox-HNO3 System in the lower stratosphere: Insights from in situ measurements and implications of the JHNO3-[OH] relationship, J. Phys. Chem. A, 105, 1521-1534.
- Voss, P. B., et al. (2001), Inorganic chlorine partitioning in the summer lower stratosphere: Modeled and measured [ClONO2]/[HCl] during POLARIS, Geophys. Res. Lett., 106, 1713-1732.
- Fahey, D., et al. (2000), Ozone destruction and production rates between spring and autumn in the Arctic stratosphere, Geophys. Res. Lett., 27:, 2605-2608.
- Gao, R., et al. (1999), A comparison of observations and model simulations of NOx/NOy in the lower stratosphere, Geophys. Res. Lett., 26, 1153-1156.
- Jaeglé, L., et al. (1997), Evolution and stoichiometry of heterogeneous processing in the Antarctic stratosphere, J. Geophys. Res., 102.D11, 13235-13253.
- Keim, E. R., et al. (1996), Observations of large reductions in the NO/NOy ratio near the mid-latitude tropopause and the role of heterogeneous chemistry, Geophys. Res. Lett., 23, 3223-3226.
- Fahey, D., et al. (1995), Emission Measurements of the Concorde Supersonic Aircraft in the Lower Stratosphere, Science, 270, 070-74.
- Cohen, R. C., et al. (1994), Are Models of Catalytic Removal of O3 by HOx accurate? Constraints From in situ Measurements of the OH to HO2 Ratio, Geophys. Res. Lett., 21, 2539-2542.
- Salawitch, R., et al. (1994), The Diurnal Variation of Hydrogen, Nitrogen, and Chlorine Radicals: Implications for the Heterogeneous Production of HNO2, Geophys. Res. Lett., 21, 2551-2554.
- Salawitch, R., et al. (1994), The Distribution of Hydrogen, Nitrogen, and Chlorine Radicals in the Lower Stratosphere: Implications for Changes in O3 Due to Emission of NOy from Supersonic Aircraft, Geophys. Res. Lett., 21, 2547-2550.
- Stimpfle, R., et al. (1994), The Response of ClO Radical Concentrations to Variations in NO2 Radical Concentrations in the Lower Stratosphere, Geophys. Res. Lett., 21, 2543-2546.