Warning message

Member access has been temporarily disabled. Please try again later.
The website is undergoing a major upgrade that began Friday, October 11th at 5:00 PM PDT. The new upgraded site will be available no later than Monday, October 21st. Until that time, the current site will be visible but logins are disabled.
Synonyms: 
CAMEX3
CAMEX-3
Associated content: 

MODIS Airborne Simulator

The MODIS Airborne Simulator (MAS) is a multispectral scanner configured to approximate the Moderate-Resolution Imaging Spectrometer (MODIS), an instrument to be orbited on the NASA EOS-AM1 platform. MODIS is designed to measure terrestrial and atmospheric processes. The MAS was a joint project of Daedalus Enterprises, Berkeley Camera Engineering, and Ames Research Center. The MODIS Airborne Simulator records fifty spectral bands.

Instrument Type: 
Measurements: 
Aircraft: 
Point(s) of Contact: 

Multispectral Atmospheric Mapping Sensor

The MAMS is a modified Daedalus Scanner flown aboard the ER-2 aircraft. It is designed to study weather related phenomena including storm system structure, cloud-top temperatures, and upper atmospheric water vapor. The scanner retains the eight silicon-detector channels in the visible/near-infrared region found on the Daedalus Thematic Mapper Simulator, with the addition of four channels in the infrared relating to specific atmospheric features.

The scanner views a 37 kilometer wide scene of the Earth from the ER2 altitude of about 20 kilometers. Each MAMS footprint (individual field of view) has a horizontal resolution of 100 meters at nadir. Since the ER2 travels at about 208 meters per second, a swath of MAMS data 37 by 740 kilometers is collected every hour. The nominal duration of an ER2 flight is 6 hours (maximum of about 7 hours).

Instrument Type: 
Measurements: 
Aircraft: 
Point(s) of Contact: 

Meteorological Measurement System

The Meteorological Measurement System (MMS) is a state-of-the-art instrument for measuring accurate, high resolution in situ airborne state parameters (pressure, temperature, turbulence index, and the 3-dimensional wind vector). These key measurements enable our understanding of atmospheric dynamics, chemistry and microphysical processes. The MMS is used to investigate atmospheric mesoscale (gravity and mountain lee waves) and microscale (turbulence) phenomena. An accurate characterization of the turbulence phenomenon is important for the understanding of dynamic processes in the atmosphere, such as the behavior of buoyant plumes within cirrus clouds, diffusions of chemical species within wake vortices generated by jet aircraft, and microphysical processes in breaking gravity waves. Accurate temperature and pressure data are needed to evaluate chemical reaction rates as well as to determine accurate mixing ratios. Accurate wind field data establish a detailed relationship with the various constituents and the measured wind also verifies numerical models used to evaluate air mass origin. Since the MMS provides quality information on atmospheric state variables, MMS data have been extensively used by many investigators to process and interpret the in situ experiments aboard the same aircraft.

Point(s) of Contact: 

JPL Laser Hygrometer

The JPL Laser Hygrometer (JLH) is an autonomous spectrometer to measure atmospheric water vapor from airborne platforms. It is designed for high-altitude scientific flights of the NASA ER-2 aircraft to monitor upper tropospheric (UT) and lower stratospheric (LS) water vapor for climate studies, atmospheric chemistry, and satellite validation. JLH will participate in the NASA SEAC4RS field mission this year. The light source for JLH is a near-infrared distributed feedback (DFB) tunable diode laser that scans across a strong water vapor vibrational-rotational combination band absorption line in the 1.37 micrometer band. Both laser and detector are temperature‐stabilized on a thermoelectrically-cooled aluminum mount inside an evacuated metal housing. A long optical path is folded within a Herriott Cell for sensitivity to water vapor in the UT and LS. A Herriott cell is an off-axis multipass cell using two spherical mirrors [Altmann et al., 1981; Herriott et al., 1964]. The laser beam enters the Herriott cell through a hole in the mirror that is closest to the laser. The laser beam traverses many passes of the Herriott cell and then returns through the same mirror hole to impinge on a detector.

Instrument Type: 
Measurements: 
Point(s) of Contact: 

Millimeter Imaging Radiometer

The Millimeter-wave Imaging Radiometer (MIR) is a cross-track-scanning radiometer that measures radiation at nine frequencies. In every scanning cycle of about 3 seconds in duration, it views two external calibration targets. MIR responds predominantly to atmospheric parameters like water vapor, clouds, and precipitation.

Instrument Type: 
Measurements: 
Point(s) of Contact: 

Lightning Instrument Project

The LIP (Lightning Instrument Package) measures lightning, electric fields, electric field changes, air conductivity. LIP provides real time electric field data for science and operations support.

The LIP is comprised of a set of optical and electrical sensors with a wide range of temporal, spatial, and spectral resolution to observe lightning and investigate electrical environments within and above thunderstorms. The instruments provide measurements of the air conductivity and vertical electric field above thunderstorms and provide estimates of the storm electric currents. In addition, LIP will detect total storm lightning and differentiate between intracloud and cloud-to-ground discharges. This data is used in studies of lightning/storm structure and lightning precipitation relationships.

Point(s) of Contact: 

ER-2 Doppler Radar

EDOP is an X-band (9.6 GHz) Doppler radar nose-mounted in the ER-2. The instrument has two antennas: one nadir-pointing with pitch stabilization, and the other forward pointing. The general objectives of EDOP are the measurement of the vertical structure of precipitation and air motions in mesoscale precipitation systems and the development of spaceborne radar algorithms for precipitation estimation.

EDOP measures high-resolution time-height sections of reflectivity and vertical hydrometeor velocity (and vertical air motion when the hydrometeor fall speed and aircraft motions are removed). An additional capability on the forward beam permits measurement of the linear depolarization ratio (LDR) which provides useful information on orientation of the hydrometeors (i.e., the canting angle), hydrometeor phase, size, etc. The dual beam geometry has advantages over a single beam. For example, along-track horizontal air motions can be calculated by using the displacement of the ER-2 to provide dual Doppler velocities (i.e., forward and nadir beams) at a particular altitude.

EDOP is designed as a turn-key system with real-time processing on-board the aircraft. The RF system consists of a coherent frequency synthesizer which generates the transmitted and local oscillator frequencies used in the system, a pulse modulated (0.5 to 2.0 micro-second pulse) high gain 20 kW Traveling Wave Tube Amplifier which is coupled through the duplexer to the antenna, and the receiver which is comprised of a low-noise (~1dB) GaAs preamplifier followed by a mixer for each of the receive channels. The composite system generates a nadir oriented beam with a co-polarized receiver and a 350 forward directed beam with co- and cross- polarized receivers. The antenna design consists of two separate offset-fed parabolic antennas, with high polarization isolation feed horns, mounted in the nose radome of the ER-2. The antennas are 0.76 m diameter resulting in a 30 beamwidth and a spot size of about 1.2 km at the surface (assuming a 20 km aircraft altitude). The two beams operate simultaneously from a single transmitter.

Instrument Type: 
Aircraft: 
Point(s) of Contact: 

Airborne Multichannel Microwave Radiometer

The Airborne Multichannel Microwave Radiometer (AMMR) measures thermal microwave emission (in degrees Kelvin of brightness temperature) from surface and atmosphere. The up-looking radiometer at 21 and 37 GHz is a component of AMMR that was developed in the 1970's for precipitation measurements from an aircraft. The entire AMMR assembly covers a frequency range of 10-92 GHz. The 21/37 GHz unit has been flown in many types of aircraft during the past three decades in various field campaigns. It was refurbished during the year 2000 and is ready for flight again.

The fixed-beam Dicke radiometer has a beam width of about 6 degrees and is currently programmed with radiometric output every second. The temperature sensitivity is < 0.5 K, and the calibration accuracy is about ±4 K. The calibration is performed on the ground by viewing targets of known brightness (e.g., sky and absorber with known brightness temperature). The unit can be installed in one of the windows of the NASA P-3 aircraft so that it views at an angle of about 15º from zenith. Thus, it is necessary to spiral the aircraft gradually down to region below the freezing level in order to make measurements effectively. Ideally, the aircraft descends at the rate of about 1 km per 5 minutes. The system requires a bottle of N2 gas to keep the wave guides dry during the in-flight operation.

Instrument Type: 
Measurements: 
Aircraft: 
Convair 580 NRC, DC-8 - AFRC, P-3 Orion - WFF
Point(s) of Contact: 

Advanced Microwave Precipitation Radiometer

The AMPR is a total power passive microwave radiometer producing calibrated brightness temperatures (TB) at 10.7, 19.35, 37.1, and 85.5 GHz. These frequencies are sensitive to the emission and scattering of precipitation-size ice, liquid water, and water vapor. The AMPR performs a 90º cross-track data scan perpendicular to the direction of aircraft motion. It processes a linear polarization feed with full vertical polarization at -45º and full horizontal polarization at +45º, with the polarization across the scan mixed as a function of sin2, giving an equal V-H mixture at 0º (aircraft nadir). A full calibration is made every fifth scan using hot and cold blackbodies. From a typical ER-2 flight altitude of ~20 km, surface footprint sizes range from 640 m (85.5 GHz) to 2.8 km (10.7 GHz). All four channels share a common measurement grid with collocated footprint centers, resulting in over-sampling of the low frequency channels with respect to 85.5 GHz.

Instrument Type: 
Measurements: 
Point(s) of Contact: 

Pages

Subscribe to RSS - CAMEX 3