Robert M. Yantosca
Organization:
Harvard University
Email:
Business Address:
Division of Engineering and Applied Sciences
29 Oxford Street
Cambridge, MA 02138
United StatesCo-Authored Publications:
- Colombi, N. K., et al. (2023), Why is ozone in South Korea and the Seoul metropolitan area so high and increasing?, Atmos. Chem. Phys., doi:10.5194/acp-23-4031-2023.
- Version, P., et al. (2023), An Adaptive Auto-Reduction Solver for Speeding Up Integration of Chemical Kinetics in Atmospheric Chemistry Models: Implementation and Evaluation in the Kinetic, J. Adv. Modeling Earth Syst., 15, e2022MS003293, doi:10.1029/2022MS003293.
- Yang, L. H., et al. (2023), Tropospheric NO2 vertical profiles over South Korea and their relation to oxidant chemistry: implications for geostationary satellite retrievals and the observation of NO2 diurnal variation from space, Atmos. Chem. Phys., doi:10.5194/acp-23-2465-2023.
- Lu, X., et al. (2021), Global methane budget and trend, 2010–2017: complementarity of inverse analyses using in situ (GLOBALVIEWplus CH4 ObsPack) and satellite (GOSAT) observations, Atmos. Chem. Phys., 21, 4637-4657, doi:10.5194/acp-21-4637-2021.
- Zhang, B., et al. (2021), Simulation of radon-222 with the GEOS-Chem global model: emissions, seasonality, and convective transport, Atmos. Chem. Phys., 21, 1861-1887, doi:10.5194/acp-21-1861-2021.
- Zhuang, J., et al. (2020), Enabling High‐Performance Cloud Computing for Earth Science Modeling on Over a Thousand Cores: Application to the GEOS‐Chem Atmospheric Chemistry Model, J. Adv. Modeling Earth Syst., 12, doi:10.1029/2020MS002064.
- Zhuang, J., et al. (2019), Enabling Immediate Access To Earth Science Models Through Cloud Computing: Application to the GEOS-Chem Model, Bull. Am. Meteorol. Soc., 1943-1960, doi:10.1175/BAMS-D-18-0243.1.
- Eastham, S. D., et al. (2018), GEOS-Chem High Performance (GCHP v11-02c): a next-generation implementation of the GEOS-Chem chemical transport model for massively parallel applications, Geosci. Model. Dev., 11, 2941-2953, doi:10.5194/gmd-11-2941-2018.
- Liu, H., et al. (2016), Using beryllium-7 to assess cross-tropopause transport in global models, Atmos. Chem. Phys., 16, 4641-4659, doi:10.5194/acp-16-4641-2016.
- Travis, K., et al. (2016), Why do models overestimate surface ozone in the Southeast United States?, Atmos. Chem. Phys., 16, 13561-13577, doi:10.5194/acp-16-13561-2016.
- Kim, P., et al. (2015), Sources, seasonality, and trends of southeast US aerosol: an integrated analysis of surface, aircraft, and satellite observations with the GEOS-Chem chemical transport model, Atmos. Chem. Phys., 15, 10411-10433, doi:10.5194/acp-15-10411-2015.
- Boys, B. L., et al. (2014), Fifteen-Year Global Time Series of Satellite-Derived Fine Particulate Matter, Environ. Sci. Technol., 48, 11109-11118, doi:10.1021/es502113p.
- Fischer, E., et al. (2014), Atmospheric peroxyacetyl nitrate (PAN): a global budget and source attribution, Atmos. Chem. Phys., 14, 2679, doi:10.5194/acp-14-2679-2014.
- Fischer, E., et al. (2012), The role of the ocean in the global atmospheric budget of acetone, Geophys. Res. Lett., 39, L01807, doi:10.1029/2011GL050086.
- Barkley, M. P., et al. (2011), Can a “state of the art” chemistry transport model simulate Amazonian tropospheric chemistry?, J. Geophys. Res., 116, D16302, doi:10.1029/2011JD015893.
- Fisher, J. A., et al. (2011), Sources, distribution, and acidity of sulfateeammonium aerosol in the Arctic in winterespring, Atmos. Environ., 45, 7301-7318, doi:10.1016/j.atmosenv.2011.08.030.
- Alvarado, M. J., et al. (2010), Nitrogen oxides and PAN in plumes from boreal fires during ARCTAS-B and their impact on ozone: an integrated analysis of aircraft and satellite observations, Atmos. Chem. Phys., 10, 9739-9760, doi:10.5194/acp-10-9739-2010.
- Fisher, J. A., et al. (2010), Source attribution and interannual variability of Arctic pollution in spring constrained by aircraft (ARCTAS, ARCPAC) and satellite (AIRS) observations of carbon monoxide, Atmos. Chem. Phys., 10, 977-996, doi:10.5194/acp-10-977-2010.
- Johnson, M. S., et al. (2010), Modeling dust and soluble iron deposition to the South Atlantic Ocean, J. Geophys. Res., 115, D15202, doi:10.1029/2009JD013311.
- Kopacz, M., et al. (2010), Global estimates of CO sources with high resolution by adjoint inversion of multiple satellite datasets (MOPITT, AIRS, SCIAMACHY, TES), Atmos. Chem. Phys., 10, 855-876, doi:10.5194/acp-10-855-2010.
- Mao, J., et al. (2010), Chemistry of hydrogen oxide radicals (HOx) in the Arctic troposphere in spring, Atmos. Chem. Phys., 10, 5823-5838, doi:10.5194/acp-10-5823-2010.
- Liu, H., et al. (2009), Sensitivity of photolysis frequencies and key tropospheric oxidants in a global model to cloud vertical distributions and optical properties, J. Geophys. Res., 114, D10305, doi:10.1029/2008JD011503.
- Boersma, K. F., et al. (2008), Validation of OMI tropospheric NO2 observations during INTEX-B and application to constrain NOx emissions over the eastern United States and Mexico, Atmos. Environ., 42, 4480-4497, doi:10.1016/j.atmosenv.2008.02.004.
- Xiao, Y., et al. (2008), Global budget of ethane and regional constraints on U.S. sources, J. Geophys. Res., 113, D21306, doi:10.1029/2007JD009415.
- Duncan, B., et al. (2007), Global budget of CO, 1988–1997: Source estimates and validation with a global model, J. Geophys. Res., 112, D22301, doi:10.1029/2007JD008459.
- Liu, Y., et al. (2007), Estimating PM2.5 component concentrations and size distributions using satellite-retrieved fractional aerosol optical depth: Part 2 - A case study, J. Air & Waste Management Assoc., 57, 1360-1369, doi:10.3155/1047-3289.57.11.1360.
- Turquety, S., et al. (2007), Inventory of boreal fire emissions for North America in 2004: Importance of peat burning and pyroconvective injection, J. Geophys. Res., 112, D12S03, doi:10.1029/2006JD007281.
- Heald, C. L., et al. (2006), Transpacific transport of Asian anthropogenic aerosols and its impact on surface air quality in the United States, J. Geophys. Res., 111, D14310, doi:10.1029/2005JD006847.
- Liu, H., et al. (2006), Radiative effect of clouds on tropospheric chemistry in a global three-dimensional chemical transport model, J. Geophys. Res., 111, D20303, doi:10.1029/2005JD006403.
- Li, Q., et al. (2005), North American pollution outflow and the trapping of convectively lifted pollution by upper-level anticyclone, J. Geophys. Res., 110, D10301, doi:10.1029/2004JD005039.
- Liu, H., et al. (2004), Constraints on the sources of tropospheric ozone from 210Pb-7Be-O3 correlations, J. Geophys. Res., 109, D07306, doi:10.1029/2003JD003988.
- Park, R. J., et al. (2004), Natural and transboundary pollution influences on sulfate-nitrate-ammonium aerosols in the United States: implications for policy, J. Geophys. Res., 109, D15204, doi:10.1029/2003JD004473.
- Suntharalingam, P., et al. (2004), Improved quantification of Chinese carbon fluxes using CO2/ CO correlations in Asian outflow, J. Geophys. Res., 109, D18S18, doi:10.1029/2003JD004362.
- Xiao, Y., et al. (2004), Constraints on Asian and European sources of methane from CH4-C2H6-CO correlations in Asian outflow, J. Geophys. Res., 109, D15S16, doi:10.1029/2003JD004475.
- Li, Q., et al. (2003), A global three-dimensional model analysis of the atmospheric budgets of HCN and CH3CN: Constraints from aircraft and ground measurements, J. Geophys. Res., 108, 8827, doi:10.1029/2002JD003075.
- Liu, H., et al. (2003), Transport pathways for Asian pollution outflow over the Pacific: Interannual and seasonal variations, J. Geophys. Res., 108, 8786, doi:10.1029/2002JD003102.
- Martin, R., et al. (2003), Global and Regional Decreases in Tropospheric Oxidants from Photochemical Effects of Aerosols, J. Geophys. Res., 108, 4097, doi:10.1029/2002JD002622.
- Liu, H., et al. (2002), Sources of tropospheric ozone along the Asian Pacific Rim: An analysis of ozonesonde observations, J. Geophys. Res., 107, 4573, doi:10.1029/2001JD002005.
- Liu, H., et al. (2001), Constraints from 210Pb and 7Be on wet deposition and transport in a global three-dimensional chemical tracer model driven by assimilated meteorological fields, J. Geophys. Res., 106, 12109-12128, doi:10.1029/2000JD900839.
- Singh, H., et al. (2000), Distribution and fate of selected oxygenated organic species in the troposphere and lower stratosphere over the Atlantic, J. Geophys. Res., 105, 3795-3805.