Organization
Jet Propulsion Laboratory
Email
Business Phone
Work
(818) 393-1148
Mobile
(626) 379-9027
Business Address
California Institute of Technology
4800 Oak Grove Drive
Mail Stop 233-200
Pasadena, CA 91109
United States
First Author Publications
-
Garay, M., et al. (2020), Introducing the 4.4 km spatial resolution Multi-Angle Imaging SpectroRadiometer (MISR) aerosol product, Atmos. Meas. Tech., 13, 593-628, doi:10.5194/amt-13-593-2020.
-
Garay, M., et al. (2016), Tomographic reconstruction of an aerosol plume using passive multiangle observations from the MISR satellite instrument, Geophys. Res. Lett., 43, 12,590-12,596, doi:10.1002/2016GL071479.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.
Co-Authored Publications
-
Hammer, M.S., et al. (2023), Assessment of the impact of discontinuity in satellite instruments and retrievals on global PM2.5 estimates, Remote Sensing of Environment, 294, 113624, doi:10.1016/j.rse.2023.113624.
-
Nelson, R.R., et al. (2023), Expanding the coverage of Multi-angle Imaging SpectroRadiometer (MISR) aerosol retrievals over shallow, turbid, and eutrophic waters, Atmos. Meas. Tech., 16, 4947-4960, doi:10.5194/amt-16-4947-2023.
-
Midzak, N., et al. (2022), Constrained Retrievals of Aerosol Optical Properties Using Combined Lidar and Imager Measurements During the FIREX-AQ Campaign, Front. Remote Sens., 3, 818605, doi:10.3389/frsen.2022.818605.
-
van Donkelaar, A., et al. (2022), Monthly Global Estimates of Fine Particulate Matter and Their Uncertainty, Environ. Sci. Technol., doi:10.1021/acs.est.1c05309.
-
Hammer, M.S., et al. (2021), The Authors, some Effects of COVID-19 lockdowns on fine particulate rights reserved; exclusive licensee matter concentrations American Association for the Advancement of Science. No claim to, Hammer et al., Sci. Adv., 7, eabg7670.
-
Hammer, M.S., et al. (2020), Improved Global Estimates of Fine Particulate Matter Concentrations and Trends Derived from Updated Satellite Retrievals, Modeling Advances, and Additional Ground-Based Monitors, Environ. Sci. Tech., 54, 7879-7890, doi:10.1021/acs.est.0c01764.
-
Le Kuai, et al. (2020), Quantification of Ammonia Emissions With High Spatial Resolution Thermal Infrared Observations From the Hyperspectral Thermal Emission Spectrometer (HyTES) Airborne Instrument, IEEE Journal Of Selected Topics In Applied Earth Observations And Remote Sensing, 1-15, doi:10.1109/JSTARS.2019.2918093.
-
Sogacheva, L., et al. (2020), Merging regional and global aerosol optical depth records from major available satellite products, Atmos. Chem. Phys., 20, 2031-2056, doi:10.5194/acp-20-2031-2020.
-
Holben, B., et al. (2018), An overview of mesoscale aerosol processes, comparisons, and validation studies from DRAGON networks, Atmos. Chem. Phys., 18, 655-671, doi:10.5194/acp-18-655-2018.
-
Jovanovic, D.J.D.V., et al. (2018), Advances in multiangle satellite remote sensing of speciated airborne particulate matter and association with adverse health effects: from MISR to MAIA, Terms of Use, 12, 042603, doi:10.1117/1.JRS.12.042603.
-
Mueller, K.J., et al. (2017), Assessment of MISR Cloud Motion Vectors (CMVs) Relative to GOES and MODIS Atmospheric Motion Vectors (AMVs), J. Appl. Meteor. Climat., 56, 555-572, doi:10.1175/JAMC-D-16-0112.1.
-
Wu, L., et al. (2017), WRF-Chem simulation of aerosol seasonal variability in the San Joaquin Valley, Atmos. Chem. Phys., 17, 7291-7309, doi:10.5194/acp-17-7291-2017.
-
Lee, H., et al. (2016), Climatology of the aerosol optical depth by components from the Multi-angle Imaging SpectroRadiometer (MISR) and chemistry transport models, Atmos. Chem. Phys., 16, 6627-6640, doi:10.5194/acp-16-6627-2016.
-
Notaro, Yu.Y.M., et al. (2016), Climatology of summer Shamal wind in the Middle East, J. Geophys. Res., 121, 289-305, doi:10.1002/2015JD024063.
-
Witek, M.L., et al. (2016), Satellite assessment of sea spray aerosol productivity: Southern Ocean case study, J. Geophys. Res., 121, 872-894, doi:10.1002/2015JD023726.
-
Chen, Y., et al. (2015), Aerosol-cloud interactions in ship tracks using Terra MODIS/MISR, J. Geophys. Res., 120, 2819-2833, doi:10.1002/2014JD022736.
-
Li, S., et al. (2015), Improving satellite-retrieved aerosol microphysical properties using GOCART data, Atmos. Meas. Tech., 8, 1157-1171, doi:10.5194/amt-8-1157-2015.
-
Li, S., et al. (2015), Improving satellite-retrieved aerosol microphysical properties using GOCART data, Atmos. Meas. Tech., 8, 1157-1171, doi:10.5194/amt-8-1157-2015.
-
Tosca, M., et al. (2014), Observational evidence of fire-driven reduction of cloud fraction in tropical Africa, J. Geophys. Res., 119, 8418-8432, doi:10.1002/2014JD021759.
-
Banks, J.R., et al. (2013), Intercomparison of satellite dust retrieval products over the west African Sahara during the Fennec campaign in June 2011, Remote Sensing of Environment, 136, 99-116, doi:10.1016/j.rse.2013.05.003.
-
Davis, A.B., et al. (2013), 3D radiative transfer effects in multi-angle/multispectral radio-polarimetric signals from a mixture of clouds and aerosols viewed by a non-imaging sensor, SPIE Proceedings, 8873, 887309, doi:10.1117/12.2023733.
-
Kalashnikova, O.V., et al. (2013), MISR Dark Water aerosol retrievals: operational algorithm sensitivity to particle non-sphericity, Atmos. Meas. Tech., 6, 1-24, doi:10.5194/amt-6-1-2013.
-
Nelson, D.L., et al. (2013), Stereoscopic Height and Wind Retrievals for Aerosol Plumes with the MISR INteractive eXplorer (MINX), Remote Sens., 5, 4593-4628, doi:10.3390/rs5094593.
-
Diner, D., et al. (2012), An optimization approach for aerosol retrievals using simulated MISR radiances, Atmos. Res., 116, 1-14, doi:10.1016/j.atmosres.2011.05.020.
-
Scollo, S., et al. (2012), MISR observations of Etna volcanic plumes, J. Geophys. Res., 117, D06210, doi:10.1029/2011JD016625.
-
Kahn, R., et al. (2011), Response to ‘‘Toward unified satellite climatology of aerosol properties. 3. MODIS versus MISR versus AERONET’’, J. Quant. Spectrosc. Radiat. Transfer, 112, 901-909, doi:10.1016/j.jqsrt.2010.11.001.
-
Kalashnikova, O.V., et al. (2011), Sensitivity of multi-angle photo-polarimetry to vertical layering and mixing of absorbing aerosols: Quantifying measurement uncertainties, J. Quant. Spectrosc. Radiat. Transfer, 112, 2149-2163, doi:10.1016/j.jqsrt.2011.05.010.
-
Kahn, R., et al. (2010), Multiangle Imaging SpectroRadiometer global aerosol product assessment by comparison with the Aerosol Robotic Network, J. Geophys. Res., 115, D23209, doi:10.1029/2010JD014601.
-
Mims, S.R., et al. (2010), MISR Stereo Heights of Grassland Fire Smoke Plumes in Australia, IEEE Trans. Geosci. Remote Sens., 48, 25-35, doi:10.1109/TGRS.2009.2027114.
-
Kahn, R., et al. (2009), MISR Aerosol Product Attributes and Statistical Comparisons With MODIS, IEEE Trans. Geosci. Remote Sens., 47, 4095-4114, doi:10.1109/TGRS.2009.2023115.
-
Wu, D.L., et al. (2009), Vertical distributions and relationships of cloud occurrence frequency as observed by MISR, AIRS, MODIS, OMI, CALIPSO, and CloudSat, Geophys. Res. Lett., 36, L09821, doi:10.1029/2009GL037464.
-
Kahn, B., et al. (2007), The radiative consistency of Atmospheric Infrared Sounder and Moderate Resolution Imaging Spectroradiometer cloud retrievals, J. Geophys. Res., 112, D09201, doi:10.1029/2006JD007486.
-
Kahn, R., et al. (2007), Satellite-derived aerosol optical depth over dark water from MISR and MODIS: Comparisons with AERONET and implications for climatological studies, J. Geophys. Res., 112, D18205, doi:10.1029/2006JD008175.
-
Cahalan, B., et al. (2005), The I3RC: Bringing Together the Most Advanced Radiative Transfer Tools for Cloudy Atmospheres, Bull. Am. Meteorol. Soc., 1275-1293, doi:10.1175/BAMS-86-9-1275.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.