Organization
University of Innsbruck
University of Oslo
Email
Business Phone
Work
(757) 504-1545
Mobile
069910861947
Mobile
93967173
Business Address
Institute for Ion Physics and Applied Physics
Technikerstrasse 25
6020 Innsbruck
Austria
Website
Co-Authored Publications
-
Cady-Pereira, K., et al. (2024), Validation of MUSES NH3 observations from AIRS and CrIS against aircraft measurements from DISCOVER-AQ and a surface network in the Magic Valley, Atmos. Meas. Tech., 17, 15-36, doi:10.5194/amt-17-15-2024.
-
Decker, Z., et al. (2024), Airborne Observations Constrain Heterogeneous Nitrogen and Halogen Chemistry on Tropospheric and Stratospheric Biomass Burning Aerosol, Geophys. Res. Lett., 51, e2023GL107273, doi:10.1029/2023GL107273.
-
Gkatzelis, G., et al. (2024), Parameterizations of US wildfire and prescribed fire emission ratios and emission factors based on FIREX-AQ aircraft measurements, Atmos. Chem. Phys., doi:10.5194/acp-24-929-2024.
-
Gkatzelis, G., et al. (2024), Parameterizations of US wildfire and prescribed fire emission ratios and emission factors based on FIREX-AQ aircraft measurements, Atmos. Chem. Phys., doi:10.5194/acp-24-929-2024.
-
Zhang, J., et al. (2024), Stratospheric air intrusions promote global-scale new particle formation.Science, Wang, 385, 210-216, doi:10.1126/science.adn2961.
-
Kim, H., et al. (2023), Observed versus simulated OH reactivity during KORUS-AQ campaign: Implications for emission inventory and chemical environment in East Asia, KORUS-AQ campaign. Elem Sci Anth, 10, 1-26, doi:https.
-
Pagonis, D., et al. (2023), Impact of Biomass Burning Organic Aerosol Volatility on Smoke Concentrations Downwind of Fires, Environ. Sci. Technol., 57, 17011-17021, doi:10.1021/acs.est.3c05017.
-
Tomsche, L., et al. (2023), Measurement report: Emission factors of NH3 and NHx for wildfires and agricultural fires in the United States, Atmos. Chem. Phys., doi:10.5194/acp-23-2331-2023.
-
Brune, W.H., et al. (2022), Observations of atmospheric oxidation and ozone production in South Korea, Atmos. Environ., 269, 118854, doi:10.1016/j.atmosenv.2021.118854.
-
Carter, T.S., et al. (2022), An improved representation of fire non-methane organic gases (NMOGs) in models: emissions to reactivity, Atmos. Chem. Phys., 22, 12093-12111, doi:10.5194/acp-22-12093-2022.
-
Kim, D., et al. (2022), Field observational constraints on the controllers in glyoxal (CHOCHO) reactive uptake to aerosol, Atmos. Chem. Phys., doi:10.5194/acp-22-805-2022.
-
Lee, Y.R., et al. (2022), An investigation of petrochemical emissions during KORUS-AQ: Ozone production, reactive nitrogen evolution, and aerosol production. Elementa: Science of the Anthropocene, 10, 00079-24, doi:10.1525/elementa.2022.00079.
-
Oak, Y.J., et al. (2022), Evaluation of Secondary Organic Aerosol (SOA) Simulations for Seoul, Korea, J. Adv. Modeling Earth Syst..
-
Schwantes, R., et al. (2022), Evaluating the Impact of Chemical Complexity and Horizontal Resolution on Tropospheric Ozone Over the Conterminous US With a Global Variable Resolution Chemistry Model, J. Adv. Modeling Earth Syst., 14, e2021MS002889, doi:10.1029/2021MS002889.
-
Stockwell, C.E., et al. (2022), Airborne Emission Rate Measurements Validate Remote Sensing Observations and Emission Inventories of Western U.S. Wildfires, Environ. Sci. Technol., 56, 7564-7577, doi:10.1021/acs.est.1c07121.
-
Wells, K.C., et al. (2022), Next‐generation isoprene measurements from space: Detecting daily variability at high resolution, J. Geophys. Res., 127, e2021JD036181, doi:10.1029/2021JD036181.
-
Wolfe, G.M., et al. (2022), Photochemical evolution of the 2013 California Rim Fire: synergistic impacts of reactive hydrocarbons and enhanced oxidants, Atmos. Chem. Phys., doi:10.5194/acp-22-4253-2022.
-
Xu, L., et al. (2022), Ozone chemistry in western U.S. wildfire plumes, Science Advances, 7, eabl3648, doi:10.1126/sciadv.abl3648.
-
Xu, L., et al. (2022), Adv.7, eabl3648 (2021) 8 December 2021SCIENCE ADVANCES, Ozone chemistry in western U.S. wildfire plumes, Xu et al., Sci., 7, eabl3648, doi:10.1126/sciadv.abl3648.
-
Decker, Z., et al. (2021), Nighttime and daytime dark oxidation chemistry in wildfire plumes: an observation and model analysis of FIREX-AQ aircraft data, Atmos. Chem. Phys., 21, 16293-16317, doi:10.5194/acp-21-16293-2021.
-
Decker, Z., et al. (2021), Novel Analysis to Quantify Plume Crosswind Heterogeneity Applied to Biomass Burning Smoke, Environ. Sci. Technol., 55, 15646-15657, doi:10.1021/acs.est.1c03803.
-
Jo, D.S., et al. (2021), Future changes in isoprene-epoxydiol-derived secondary organic aerosol (IEPOX SOA) under the Shared Socioeconomic Pathways: the importance of physicochemical dependency, Atmos. Chem. Phys., 21, 3395-3425, doi:10.5194/acp-21-3395-2021.
-
Pagonis, D., et al. (2021), Airborne extractive electrospray mass spectrometry measurements of the chemical composition of organic aerosol, Atmos. Meas. Tech., 14, 1545-1559, doi:10.5194/amt-14-1545-2021.
-
Schroeder, J.R., et al. (2020), Observation-based modeling of ozone chemistry in the Seoul metropolitan area during the Korea-United States Air Quality Study (KORUS-AQ), Elem Sci Anth, 8, doi:10.1525/elementa.400.
-
Schwantes, R., et al. (2020), Comprehensive isoprene and terpene gas-phase chemistry improves simulated surface ozone in the southeastern US, Atmos. Chem. Phys., 20, 3739-3776, doi:10.5194/acp-20-3739-2020.
-
Souri, A., et al. (2020), An inversion of NOx and non-methane volatile organic compound (NMVOC) emissions using satellite observations during the KORUS-AQ campaign and implications for surface ozone over East Asia, Atmos. Chem. Phys., 20, 9837-9854, doi:10.5194/acp-20-9837-2020.
-
Wells, K.C., et al. (2020), Satellite isoprene retrievals constrain emissions and atmospheric oxidation, Nature, 585, 225-233, doi:10.1038/s41586-020-2664-3.
-
Behrenfeld, M., et al. (2019), The North Atlantic Aerosol and Marine Ecosystem Study (NAAMES): Science Motive and Mission Overview, Front. Mar. Sci., 6, 122, doi:10.3389/fmars.2019.00122.
-
Chen, X., et al. (2019), On the sources and sinks of atmospheric VOCs: an integrated analysis of recent aircraft campaigns over North America, Atmos. Chem. Phys., 19, 9097-9123, doi:10.5194/acp-19-9097-2019.
-
Liao, J., et al. (2019), Towards a satellite formaldehyde – in situ hybrid estimate for organic aerosol abundance, Atmos. Chem. Phys., 19, 2765-2785, doi:10.5194/acp-19-2765-2019.
-
Oak, Y.J., et al. (2019), Evaluation of simulated O3 production efficiency during the KORUS-AQ campaign: Implications for anthropogenic NOx emissions in Korea, Elem Sci Anth, 7, 56, doi:10.1525/elementa.394.
-
Sullivan, J., et al. (2019), Taehwa Research Forest: a receptor site for severe domestic pollution events in Korea during 2016, Atmos. Chem. Phys., 19, 5051-5067, doi:10.5194/acp-19-5051-2019.
-
Brune, W.H., et al. (2018), Atmospheric oxidation in the presence of clouds during the Deep Convective Clouds and Chemistry (DC3) study, Atmos. Chem. Phys., 18, 14493-14510, doi:10.5194/acp-18-14493-2018.
-
Ervens, B., et al. (2018), Is there an aerosol signature of chemical cloud processing?, Atmos. Chem. Phys., 18, 16099-16119, doi:10.5194/acp-18-16099-2018.
-
Kaiser, J., et al. (2018), High-resolution inversion of OMI formaldehyde columns to quantify isoprene emission on ecosystem-relevant scales: application to the southeast US, Atmos. Chem. Phys., 18, 5483-5497, doi:10.5194/acp-18-5483-2018.
-
Lamb, K., et al. (2018), Estimating Source Region Influences on Black Carbon Abundance, Microphysics, and Radiative Effect Observed Over South Korea, J. Geophys. Res., 123, 13,527-13,548, doi:10.1029/2018JD029257.
-
Baier, B.C., et al. (2017), Higher measured than modeled ozone production at increased NOx levels in the Colorado Front Range, Atmos. Chem. Phys., 17, 11273-11292, doi:10.5194/acp-17-11273-2017.
-
Liu, X., et al. (2017), Airborne measurements of western U.S. wildfire emissions: Comparison with prescribed burning and air quality implications, J. Geophys. Res., 122, 6108-6129, doi:10.1002/2016JD026315.
-
Perring, A., et al. (2017), In situ measurements of water uptake by black carbon-containing aerosol in wildfire plumes, J. Geophys. Res., 122, 1086-1097, doi:10.1002/2016JD025688.
-
Pfister, G., et al. (2017), Using Observations and Source-Specific Model Tracers to Characterize Pollutant Transport During FRAPPÉ and DISCOVER-AQ, J. Geophys. Res., 122, 10,510-10,538, doi:10.1002/2017JD027257.
-
Cai, C., et al. (2016), Simulating reactive nitrogen, carbon monoxide, and ozone in California during ARCTAS-CARB 2008 with high wildfire activity, Atmos. Environ., 128, 28-44, doi:10.1016/j.atmosenv.2015.12.031.
-
Fisher, J.A., et al. (2016), Organic nitrate chemistry and its implications for nitrogen budgets in an isoprene- and monoterpene-rich atmosphere: constraints from aircraft (SEAC4RS) and ground-based (SOAS) observations in the Southeast US, Atmos. Chem. Phys., 16, 5969-5991, doi:10.5194/acp-16-5969-2016.
-
Halliday, H., et al. (2016), Atmospheric benzene observations from oil and gas production in the Denver-Julesburg Basin in July and August 2014, J. Geophys. Res., 121, doi:10.1002/2016JD025327.
-
Liu, X., et al. (2016), Agricultural fires in the southeastern U.S. during SEAC4RS: Emissions of trace gases and particles and evolution of ozone, reactive nitrogen, and organic aerosol, J. Geophys. Res., 121, 7383-7414, doi:10.1002/2016JD025040.
-
Müller, M., et al. (2016), In situ measurements and modeling of reactive trace gases in a small biomass burning plume, Atmos. Chem. Phys., 16, 3813-3824, doi:10.5194/acp-16-3813-2016.
-
Nault, B., et al. (2016), Observational Constraints on the Oxidation of NOx in the Upper Troposphere, J. Phys. Chem. A, 120, 1468-1478, doi:10.1021/acs.jpca.5b07824.
-
Shingler, T., et al. (2016), Airborne characterization of subsaturated aerosol hygroscopicity and dry refractive index from the surface to 6.5km during the SEAC4RS campaign, J. Geophys. Res., 121, 4188-4210, doi:10.1002/2015JD024498.
-
Shingler, T., et al. (2016), Ambient observations of hygroscopic growth factor and f(RH) below 1: Case studies from surface and airborne measurements, J. Geophys. Res., 121, doi:10.1002/2016JD025471.
-
Yates, E., et al. (2016), Airborne measurements and emission estimates of greenhouse gases and other trace constituents from the 2013 California Yosemite Rim wildfire, Atmos. Environ., 127, 293-302, doi:10.1016/j.atmosenv.2015.12.038.
-
Zamora, L., et al. (2016), Aircraft-measured indirect cloud effects from biomass burning smoke in the Arctic and subarctic, Atmos. Chem. Phys., 16, 715-738, doi:10.5194/acp-16-715-2016.
-
Zhang, Y., et al. (2016), Large vertical gradient of reactive nitrogen oxides in the boundary layer: Modeling analysis of DISCOVER-AQ 2011 observations, J. Geophys. Res., 121, doi:10.1002/2015JD024203.
-
Apel, E., et al. (2015), Upper tropospheric ozone production from lightning NOx-impacted convection: Smoke ingestion case study from the DC3 campaign, J. Geophys. Res., 120, 2505-2523, doi:10.1002/2014JD022121.
-
Barth, M.C., et al. (2015), The Deep Convective Clouds And Chemistry (Dc3) Field Campaign, Bull. Am. Meteorol. Soc., 1281-1310.
-
Emmons, L., et al. (2015), The POLARCAT Model Intercomparison Project (POLMIP): overview and evaluation with observations, Atmos. Chem. Phys., 15, 6721-6744, doi:10.5194/acp-15-6721-2015.
-
Hu, W., et al. (2015), Characterization of a real-time tracer for isoprene epoxydiols-derived secondary organic aerosol (IEPOX-SOA) from aerosol mass spectrometer measurements, Atmos. Chem. Phys., 15, 11807-11833, doi:10.5194/acp-15-11807-2015.
-
Liao, J., et al. (2015), Airborne organosulfates measurements over the continental US, J. Geophys. Res., 120, 2990-3005, doi:10.1002/2014JD022378.
-
Liu, J., et al. (2015), Brown carbon aerosol in the North American continental troposphere: sources, abundance, and radiative forcing, Atmos. Chem. Phys., 15, 7841-7858, doi:10.5194/acp-15-7841-2015.
-
Wagner, N.L., et al. (2015), In situ vertical profiles of aerosol extinction, mass, and composition over the southeast United States during SENEX and SEAC4RS: observations of a modest aerosol enhancement aloft, Atmos. Chem. Phys., 15, 7085-7102, doi:10.5194/acp-15-7085-2015.
-
Wolfe, G.M., et al. (2015), Quantifying sources and sinks of reactive gases in the lower atmosphere using airborne flux observations, Geophys. Res. Lett., 42, 8231-8240, doi:10.1002/2015GL065839.
-
Yang, Q., et al. (2015), Aerosol transport and wet scavenging in deep convective clouds: A case study and model evaluation using a multiple passive tracer analysis approach, J. Geophys. Res., 120, 8448-8468, doi:10.1002/2015JD023647.
-
Liu, J., et al. (2014), Brown carbon in the continental troposphere, Geophys. Res. Lett., 41, 2191-2195, doi:10.1002/2013GL058976.
-
Bian, H., et al. (2013), Source attributions of pollution to the Western Arctic during the NASA ARCTAS field campaign, Atmos. Chem. Phys., 13, 4707-4721, doi:10.5194/acp-13-4707-2013.
-
Browne, E.C., et al. (2013), Observations of total RONO2 over the boreal forest: NOx sinks and HNO3 sources, Atmos. Chem. Phys., 13, 4543-4562, doi:10.5194/acp-13-4543-2013.
-
Apel, E., et al. (2012), Impact of the deep convection of isoprene and other reactive trace species on radicals and ozone in the upper troposphere, Atmos. Chem. Phys., 12, 1135-1150, doi:10.5194/acp-12-1135-2012.
-
Corr, C.A., et al. (2012), Spectral absorption of biomass burning aerosol determined from retrieved single scattering albedo during ARCTAS, Atmos. Chem. Phys., 12, 10505-10518, doi:10.5194/acp-12-10505-2012.
-
Huang, M., et al. (2012), Sectoral and geographical contributions to summertime continental United States (CONUS) black carbon spatial distributions, Atmos. Environ., 51, 165-174, doi:10.1016/j.atmosenv.2012.01.021.
-
Olson, J., et al. (2012), An analysis of fast photochemistry over high northern latitudes during spring and summer using in-situ observations from ARCTAS and TOPSE, Atmos. Chem. Phys., 12, 6799-6825, doi:10.5194/acp-12-6799-2012.
-
Sahu, L., et al. (2012), Emission characteristics of black carbon in anthropogenic and biomass burning plumes over California during ARCTAS-CARB 2008, J. Geophys. Res., 117, D16302, doi:10.1029/2011JD017401.
-
Singh, H., et al. (2012), Interactions of fire emissions and urban pollution over California: Ozone formation and air quality simulations, Atmos. Environ., 56, 45-51.
-
Browne, E.C., et al. (2011), Global and regional effects of the photochemistry of CH3O2NO2: evidence from ARCTAS, Atmos. Chem. Phys., 11, 4209-4219, doi:10.5194/acp-11-4209-2011.
-
Cubison, M.J., et al. (2011), Effects of aging on organic aerosol from open biomass burning smoke in aircraft and laboratory studies, Atmos. Chem. Phys., 11, 12049-12064, doi:10.5194/acp-11-12049-2011.
-
Hecobian, A., et al. (2011), Comparison of chemical characteristics of 495 biomass burning plumes intercepted by the NASA DC-8 aircraft during the ARCTAS/CARB-2008 field campaign, Atmos. Chem. Phys., 11, 13325-13337, doi:10.5194/acp-11-13325-2011.
-
Hornbrook, R.S., et al. (2011), Observations of nonmethane organic compounds during ARCTAS – Part 1: Biomass burning emissions and plume enhancements, Atmos. Chem. Phys., 11, 11103-11130, doi:10.5194/acp-11-11103-2011.
-
Kondo, Y., et al. (2011), Emissions of black carbon, organic, and inorganic aerosols from biomass burning in North America and Asia in 2008, J. Geophys. Res., 116, D08204, doi:10.1029/2010JD015152.
-
Liang, Q., et al. (2011), Reactive nitrogen, ozone and ozone production in the Arctic troposphere and the impact of stratosphere-troposphere exchange, Atmos. Chem. Phys., 11, 13181-13199, doi:10.5194/acp-11-13181-2011.
-
Matsui, H., et al. (2011), Seasonal variation of the transport of black carbon aerosol from the Asian continent to the Arctic during the ARCTAS aircraft campaign, J. Geophys. Res., 116, D05202, doi:10.1029/2010JD015067.
-
Matsui, H., et al. (2011), Accumulation‐mode aerosol number concentrations in the Arctic during the ARCTAS aircraft campaign: Long‐range transport of polluted and clean air from the Asian continent, J. Geophys. Res., 116, D20217, doi:10.1029/2011JD016189.
-
McHaughton, C.S., et al. (2011), Absorbing aerosols in the troposphere of the Western Arctic during the 2008 ACTAS/ARCPAC airborne field campaigns, Atmos. Chem. Phys., 11, 7561-7582, doi:10.5194/acp-11-7515-2011.
-
McNaughton, C.S., et al. (2011), Absorbing aerosol in the troposphere of the Western Arctic during the 2008 ARCTAS/ARCPAC airborne field campaigns, Atmos. Chem. Phys., 11, 7561-7582, doi:10.5194/acp-11-7561-2011.
-
Simpson, I.J., et al. (2011), Boreal forest fire emissions in fresh Canadian smoke plumes: C1-C10 volatile organic compounds (VOCs), CO2, CO, NO2, NO, HCN and CH3CN, Atmos. Chem. Phys., 11, 6445-6463, doi:10.5194/acp-11-6445-2011.
-
Singh, H., et al. (2010), Pollution influences on atmospheric composition and chemistry at high northern latitudes: Boreal and California forest fire emissions, Atmos. Environ., 44, 4553-4564, doi:10.1016/j.atmosenv.2010.08.026.
-
Perring, A., et al. (2009), A product study of the isoprene+NO3 reaction, Atmos. Chem. Phys., 9, 4945-4956, doi:10.5194/acp-9-4945-2009.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.