Organization
California Institute of Technology
Jet Propulsion Laboratory
First Author Publications
-
Frankenberg, C., et al. (2024), Data Drought in the Humid Tropics: How to Overcome the Cloud Barrier in Greenhouse Gas Remote Sensing, Geophys. Res. Lett., 51, e2024GL108791, doi:10.1029/2024GL108791.
-
Frankenberg, C., et al. (2018), The Chlorophyll Fluorescence Imaging Spectrometer (CFIS), mapping far red T fluorescence from aircraft, Remote Sensing of Environment, 217, 523-536, doi:10.1016/j.rse.2018.08.032.
-
Frankenberg, C., et al. (2015), The Orbiting Carbon Observatory (OCO-2): spectrometer performance evaluation using pre-launch direct sun measurements, Atmos. Meas. Tech., 8, 301-313, doi:10.5194/amt-8-301-2015.
-
Frankenberg, C., et al. (2014), The Orbiting Carbon Observatory (OCO-2): spectrometer performance evaluation using pre-launch direct sun measurements, Atmos. Meas. Tech., 7, 1-10, doi:10.5194/amt-7-1-2014.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.
Co-Authored Publications
-
Wang, Y., et al. (2024), Beyond the visible: Accounting for ultraviolet and far-red radiation in vegetation productivity and surface energy budgets, doi:10.1111/gcb.17346.
-
Wang, Y., and C. Frankenberg (2024), Toward More Accurate Modeling of Canopy Radiative Transfer and Leaf Electron Transport in Land Surface Modeling, Earth's Future, 16, e2023MS003992, doi:10.1029/2023MS003992.
-
Yao, Y., et al. (2024), Investigating Diurnal and Seasonal Cycles of Vegetation Optical Depth Retrieved From GNSS Signals in a Broadleaf Forest, Geophys. Res. Lett., 51, e2023GL107121, doi:10.1029/2023GL107121.
-
Humphrey, V., and C. Frankenberg (2023), Continuous ground monitoring of vegetation optical depth and water content with GPS signals, Biogeosciences, doi:10.5194/bg-20-1789-2023.
-
Jacob, D.J., et al. (2023), Quantifying methane emissions from the global scale down to point sources using satellite observations of atmospheric methane, Atmos. Chem. Phys., doi:10.5194/acp-22-9617-2022.
-
Luis, K., et al. (2023), First Light Demonstration of Red Solar Induced Fluorescence for Harmful Algal Bloom Monitoring, Geophys. Res. Lett..
-
Yin, Y., et al. (2023), Authors, some Unequal exposure to heatwaves in Los Angeles: Impact rights reserved; exclusive licensee of uneven green spaces American Association for the Advancement of Science. No claim to, Yin et al., Sci. Adv., 9, 2023.
-
Turner, A.J., et al. (2021), Observed Impacts of COVID-19 on Urban CO2 Emissions, Geophys. Res. Lett..
-
Yin, Y., et al. (2021), Fire decline in dry tropical ecosystems enhances decadal land carbon sink, Nature, doi:10.1038/s41467-020-15852-2.
-
Nguyen, N.H., et al. (2020), Effects of Chemical Feedbacks on Decadal Methane Emissions Estimates, Geophys. Res. Lett., 47, 1-13, doi:10.1029/2019GL085706.
-
Peng, B., et al. (2020), Assessing the benefit of satellite-based Solar-Induced Chlorophyll T Fluorescence in crop yield prediction, Int J Appl Earth Obs Geoinformation, 90, 102126, doi:10.1016/j.jag.2020.102126.
-
Turner, A.J., et al. (2020), A double peak in the seasonality of California’s photosynthesis as observed from space, Biogeosciences, 17, 405-422, doi:10.5194/bg-17-405-2020.
-
Turner, A.J., et al. (2020), manuscript submitted to Geophysical Research Letters Extreme events driving year-to-year differences in gross primary productivity across the US, CC_BY_NC_ND_4.0 , First posted online: Tue, 36, doi:10.1002/essoar.10504378.1.
-
Whelan, M., et al. (2020), Two scientific communities striving for a common cause: innovations in carbon cycle science, Bull. Am. Meteorol. Soc., doi:10.1175/BAMS-D-19-0306.1.
-
Yin, Y., et al. (2020), Fire decline in dry tropical ecosystems enhances decadal land carbon sink, Nature, doi:10.1038/s41467-020-15852-2.
-
Zhang, Z., et al. (2020), The potential of satellite FPAR product for GPP estimation: An indirect T evaluation using solar-induced chlorophyll fluorescence ⁎, Remote Sensing of Environment, 240, 111686, doi:10.1016/j.rse.2020.111686.
-
Bacour, C., et al. (2019), Differences Between OCO‐2 and GOME‐2 SIF Products From a Model‐Data Fusion Perspective, J. Geophys. Res., 124, 3143-3157, doi:10.1029/2018JG004938.
-
Cusworth, D., et al. (2019), Potential of next-generation imaging spectrometers to detect and quantify methane point sources from space, Atmos. Meas. Tech., 12, 5655-5668, doi:10.5194/amt-12-5655-2019.
-
Magney, T.S., et al. (2019), Mechanistic evidence for tracking the seasonality of photosynthesis with solar-induced fluorescence, Proc. Natl. Acad. Sci., doi:10.
-
Magney, T.S., et al. (2019), Mechanistic evidence for tracking the seasonality of photosynthesis with solar-induced fluorescence, Proc. Natl. Acad. Sci., 116, 11640-11645, doi:10.1073/pnas.1900278116.
-
Mohammeda, G.H., et al. (2019), Remote sensing of solar-induced chlorophyll fluorescence (SIF) in T vegetation: 50 years of progress, Remote Sensing of Environment, 231, 111177, doi:10.1016/j.rse.2019.04.030.
-
Parazoo, N., et al. (2019), Towards a harmonized long‐term spaceborne record of far‐red solar‐induced fluorescence, J. Geophys. Res., 124, 2518-2539.
-
Raczka, B., et al. (2019), lead to differences between this version and the Version of Record. Please cite this article as, J. Geophys. Res., doi:10.1029/2018JG004883.
-
Köehler, P., et al. (2018), Global retrievals of solar-induced chlorophyll fluorescence with TROPOMI: First results and intersensor comparison to OCO-2, Geophys. Res. Lett., 45, 10,456-10,463, doi:10.1029/2018GL079031.
-
O'Dell, C., et al. (2018), Improved retrievals of carbon dioxide from Orbiting Carbon Observatory-2 with the version 8 ACOS algorithm, Atmos. Meas. Tech., 11, 6539-6576, doi:10.5194/amt-11-6539-2018.
-
Sun, Y., et al. (2018), Overview of Solar-Induced chlorophyll Fluorescence (SIF) from the Orbiting T Carbon Observatory-2: Retrieval, cross-mission comparison, and global monitoring for GPP ⁎ ⁎⁎, Remote Sensing of Environment, 209, 808-823, doi:10.1016/j.rse.2018.02.016.
-
Zuromski, L.M., et al. (2018), Solar-Induced Fluorescence Detects Interannual Variation in Gross Primary Production of Coniferous Forests in the Western United States, Geophys. Res. Lett., 45, doi:10.1029/2018GL077906.
-
Crisp, D., et al. (2017), The on-orbit performance of the Orbiting Carbon Observatory-2 (OCO-2) instrument and its radiometrically calibrated products, Atmos. Meas. Tech., 10, 59-81, doi:10.5194/amt-10-59-2017.
-
Eldering, A., et al. (2017), R ES E A RC H | R E MO T E S E NS I NG, Science, 358, eaam5745, doi:10.1126/science.aam5745.
-
Eldering, A., et al. (2017), The Orbiting Carbon Observatory-2: first 18 months of science data products, Atmos. Meas. Tech., 10, 549-563, doi:10.5194/amt-10-549-2017.
-
Lee, R.A.M., et al. (2017), Preflight Spectral Calibration of the Orbiting Carbon Observatory 2, IEEE Trans. Geosci. Remote Sens., 55, 2499-2508, doi:10.1109/TGRS.2016.2645614.
-
Liu, J., et al. (2017), R ES E A RC H | R E MO T E S E NS I NG, Science, 358, eaam5690, doi:10.1126/science.aam5690.
-
Luus, K.A., et al. (2017), Tundra photosynthesis captured by satellite-observed solar-induced chlorophyll fluorescence, Geophys. Res. Lett., 44, 1564-1573, doi:10.1002/2016GL070842.
-
Sun, K., et al. (2017), Characterization of the OCO-2 instrument line shape functions using on-orbit solar measurements, Atmos. Meas. Tech., 10, 939-953, doi:10.5194/amt-10-939-2017.
-
Sun, Y., et al. (2017), R ES E A RC H | R E MO T E S E NS I NG, Science, 358, 189, doi:10.1126/science.aam5747.
-
Verma, M., et al. (2017), Effect of environmental conditions on the relationship between solar-induced fluorescence and gross primary productivity at an OzFlux grassland site, J. Geophys. Res., 122, 716-733, doi:10.1002/2016JG003580.
-
Worden, J., et al. (2017), Evaluation and attribution of OCO-2 XCO2 uncertainties, Atmos. Meas. Tech., 10, 2759-2771, doi:10.5194/amt-10-2759-2017.
-
Kulawik, S., et al. (2016), Consistent evaluation of ACOS-GOSAT, BESD-SCIAMACHY, CarbonTracker, and MACC through comparisons to TCCON, Atmos. Meas. Tech., 9, 683-709, doi:10.5194/amt-9-683-2016.
-
Taylor, T.E., et al. (2016), Orbiting Carbon Observatory-2 (OCO-2) cloud screening algorithms: validation against collocated MODIS and CALIOP data, Atmos. Meas. Tech., 9, 973-989, doi:10.5194/amt-9-973-2016.
-
Joiner, J., et al. (2013), Global monitoring of terrestrial chlorophyll fluorescence from moderate-spectral-resolution near-infrared satellite measurements: methodology, simulations, and application to GOME-2, Atmos. Meas. Tech., 6, 2803-2823, doi:10.5194/amt-6-2803-2013.
-
Kuai, L., et al. (2013), Profiling tropospheric CO2 using Aura TES and TCCON instruments, Atmos. Meas. Tech., 6, 63-79.
-
Mandrake, L., et al. (2013), Semi-autonomous sounding selection for OCO-2, Atmos. Meas. Tech., 6, 2851-2864, doi:10.5194/amt-6-2851-2013.
-
Oshchepkov, S., et al. (2013), Effects of atmospheric light scattering on spectroscopic observations of greenhouse gases from space. Part 2: Algorithm intercomparison in the GOSAT data processing for CO2 retrievals over TCCON sites, J. Geophys. Res., 118, 1493-1512, doi:10.1002/jgrd.50146.
-
Worden, H., et al. (2013), Decadal record of satellite carbon monoxide observations, Atmos. Chem. Phys., 13, 837-850, doi:10.5194/acp-13-837-2013.
-
Lee, J., et al. (2012), Asian monsoon hydrometeorology from TES and SCIAMACHY water vapor isotope measurements and LMDZ simulations: Implications for speleothem climate record interpretation, J. Geophys. Res., 117, D15112, doi:10.1029/2011JD017133.
-
O'Dell, C., et al. (2012), The ACOS CO2 retrieval algorithm – Part 1: Description and validation against synthetic observations, Atmos. Meas. Tech., 5, 99-121, doi:10.5194/amt-5-99-2012.
-
Risi, C., et al. (2012), Process-evaluation of tropospheric humidity simulated by general circulation models using water vapor isotopologues: 1. Comparison between models and observations, J. Geophys. Res., 117, D05303, doi:10.1029/2011JD016621.
-
Butz, A., et al. (2011), Toward accurate CO2 and CH4 observations from GOSAT, Geophys. Res. Lett., 38, L14812, doi:10.1029/2011GL047888.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.