Surface dimming by the 2013 Rim Fire simulated by a sectional aerosol model

Yu, P., O. B. Toon, C. Bardeen, A. Bucholtz, K. Rosenlof, Saide Peralta, A. da Silva, L. D. Ziemba, K. L. Thornhill, J. Jimenez-Palacios, Campuzano Jost, J. Schwarz, A. Perring, K. Froyd, N. L. Wagner, M. J. Mills, and J. S. Reid (2016), Surface dimming by the 2013 Rim Fire simulated by a sectional aerosol model, J. Geophys. Res., 121, 7079-7087, doi:10.1002/2015JD024702.

The Rim Fire of 2013, the third largest area burned by fire recorded in California history, is simulated by a climate model coupled with a size-resolved aerosol model. Modeled aerosol mass, number, and particle size distribution are within variability of data obtained from multiple-airborne in situ measurements. Simulations suggest that Rim Fire smoke may block 4–6% of sunlight energy reaching the surface, with a dimming efficiency around 120–150 W m-2 per unit aerosol optical depth in the midvisible at 13:00–15:00 local time. Underestimation of simulated smoke single scattering albedo at midvisible by 0.04 suggests that the model overestimates either the particle size or the absorption due to black carbon. This study shows that exceptional events like the 2013 Rim Fire can be simulated by a climate model with 1° resolution with overall good skill, although that resolution is still not sufficient to resolve the smoke peak near the source region.

PDF of Publication: 
Download from publisher's website.
Research Program: 
Tropospheric Chemistry Program (TCP)