Warning message

Member access has been temporarily disabled. Please try again later.
The website is undergoing a major upgrade. Until that is complete, the current site will be visible but logins are disabled.

Ice cloud backscatter study and comparison with CALIPSO and MODIS satellite...

Ding, J., P. Yang, R. E. Holz, S. Platnick, K. G. Meyer, M. Vaughan, Y. Hu, and M. D. King (2016), Ice cloud backscatter study and comparison with CALIPSO and MODIS satellite data Jiachen Ding,1 Ping Yang,1,* Robert E. Holz,2 Steven Platnick,3 Kerry G. Meyer,3,4 Mark, Optics Express, 24, 620-636, doi:10.1364/OE.24.000620.
Abstract: 

An invariant imbedding T-matrix (II-TM) method is used to calculate the single-scattering properties of 8-column aggregate ice crystals. The II-TM based backscatter values are compared with those calculated by the improved geometric-optics method (IGOM) to refine the backscattering properties of the ice cloud radiative model used in the MODIS Collection 6 cloud optical property product. The integrated attenuated backscatter-tocloud optical depth (IAB-ICOD) relation is derived from simulations using a CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite) lidar simulator based on a Monte Carlo radiative transfer model. By comparing the simulation results and co-located CALIPSO and MODIS (Moderate Resolution Imaging Spectroradiometer) observations, the non-uniform zonal distribution of ice clouds over ocean is characterized in terms of a mixture of smooth and rough ice particles. The percentage of the smooth particles is approximately 6% and 9% for tropical and midlatitude ice clouds, respectively.

PDF of Publication: 
Download from publisher's website.
Research Program: 
Radiation Science Program (RSP)