Exploring Subpixel Learning Algorithms for Estimating Global Land Cover...
Kumar, U., S. Ganguly, R. Nemani, K. S. Raja, C. Milesi, R. Sinha, A. Michaelis, P. Votava, H. Hashimoto, S. Li, W. Wang, S. Kalia, and S. Gayaka (2017), Exploring Subpixel Learning Algorithms for Estimating Global Land Cover Fractions from Satellite Data Using High Performance Computing, Remote Sens., 9, 1105, doi:10.3390/rs9111105.
PDF of Publication:
Download from publisher's website.
Research Program:
Land Cover & Land Use Change Program (LCLUC)