Warning message

Member access has been temporarily disabled. Please try again later.
The website is undergoing a major upgrade. Until that is complete, the current site will be visible but logins are disabled.

Evaluation of cloud and water vapor simulations in CMIP5 climate models using...

Jiang, J., H. Su, C. Zhai, V. S. Perun, A. Del Genio, L. S. Nazarenko, L. J. Donner, L. W. Horowitz, C. Seman, J. Cole, A. Gettelman, M. A. Ringer, L. Rotstayn, S. Jeffrey, T. Wu, F. Brient, J. Dufresne, H. Kawai, T. Koshiro, M. Watanabe, T. S. LÉcuyer, E. M. Volodin, T. Iversen, H. Drange, M. D. S. Mesquita, B. Read, J. W. Waters, B. Tian, J. Teixeira, and G. Stephens (2012), Evaluation of cloud and water vapor simulations in CMIP5 climate models using NASA “A-Train” satellite observations, J. Geophys. Res., 117, D14105, doi:10.1029/2011JD017237.
Abstract: 

Using NASA’s A-Train satellite measurements, we evaluate the accuracy of cloud water content (CWC) and water vapor mixing ratio (H2O) outputs from 19 climate models submitted to the Phase 5 of Coupled Model Intercomparison Project (CMIP5), and assess improvements relative to their counterparts for the earlier CMIP3. We find more than half of the models show improvements from CMIP3 to CMIP5 in simulating column-integrated cloud amount, while changes in water vapor simulation are insignificant. For the 19 CMIP5 models, the model spreads and their differences from the observations are larger in the upper troposphere (UT) than in the lower or middle troposphere (L/MT). The modeled mean CWCs over tropical oceans range from ~3% to ~15× of the observations in the UT and 40% to 2× of the observations in the L/MT. For modeled H2Os, the mean values over tropical oceans range from ~1% to 2× of the observations in the UT and within 10% of the observations in the L/MT. The spatial distributions of clouds at 215 hPa are relatively well-correlated with observations, noticeably better than those for the L/MT clouds. Although both water vapor and clouds are better simulated in the L/MT than in the UT, there is no apparent correlation between the model biases in clouds and water vapor. Numerical scores are used to compare different model performances in regards to spatial mean, variance and distribution of CWC and H2O over tropical oceans. Model performances at each pressure level are ranked according to the average of all the relevant scores for that level.

PDF of Publication: 
Download from publisher's website.
Research Program: 
Modeling Analysis and Prediction Program (MAP)
Radiation Science Program (RSP)
Mission: 
CloudSat
CALIPSO
Aura